Article contents
Damping of magnetohydrodynamic waves in a rotating fluid
Published online by Cambridge University Press: 12 September 2017
Abstract
The long-time evolution of a flow structure subject to background rotation and a coaxial uniform magnetic field is investigated in this paper. The conditions of magnetic Reynolds number $Rm\ll 1$ and Rossby number $Ro\ll 1$ apply, while the condition of magnetic interaction parameter $N\gg 1$ ensures that nonlinear inertial forces are small in the system. Cylindrical polar coordinates $(s,\unicode[STIX]{x1D719},z)$ are used, where the velocity and the induced magnetic field are axisymmetric. Two regimes are analysed in the inviscid limit, that of strong rotation, where the inertial wave frequency is much higher than the Alfvén wave frequency, and that of weak rotation, where the Alfvén wave frequency is dominant. In either regime, the evolution consists of a damped wave-dominated phase followed by a diffusion-dominated phase. For strong rotation, the laws of energy decay in the damped wave phase are obtained by considering the decay of the fast and slow magneto-Coriolis (MC) waves individually. The diffusion-dominated phase obeys the decay laws in the well-known quasistatic approximation. The wave–diffusion transition time scale indicates that the wave phase of decay is very long, so that small-scale turbulence is characterized by damped wave motions. The ratio of kinetic to magnetic energies of the slow MC wave in the early stages of evolution is $O(Le^{2})$, where $Le$ is the initial ratio of the inertial wave to Alfvén wave time scales. The induced magnetic field is hence far more efficient than the velocity in supporting slow MC waves for $Le\ll 1$. In the regime of weak rotation, the fast and slow MC wave solutions merge and tend to the classical damped Alfvén wave solution. Here, the decay laws in non-rotating magnetohydrodynamic turbulence (Moffatt, J. Fluid Mech., vol. 28, 1967, pp. 571–592) are recovered. Computations of the general solution for the long-time decay of an isolated vortex confirm the theoretical energy scalings as well as the wave–diffusion transition time scale of the kinetic energy. It is shown that a magnetically damped system that initially generates Alfvén waves because of relatively weak rotation can subsequently give rise to MC waves. Small-scale motions of $Rm\sim 1$ in the Earth’s core probably generate slow magnetostrophic waves only for $Le>0.1$, which suggests that a mean intensity of ${\sim}10~\text{mT}$ or higher is plausible for the toroidal magnetic field within the core.
- Type
- Papers
- Information
- Copyright
- © 2017 Cambridge University Press
References
- 10
- Cited by