Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T10:50:14.710Z Has data issue: false hasContentIssue false

Dense gas effects in inviscid homogeneous isotropic turbulence

Published online by Cambridge University Press:  30 June 2016

L. Sciacovelli
Affiliation:
Laboratoire DynFluid, Arts et Métiers ParisTech, 75013 Paris, France Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, 70125 Bari, Italy
P. Cinnella*
Affiliation:
Laboratoire DynFluid, Arts et Métiers ParisTech, 75013 Paris, France
C. Content
Affiliation:
Laboratoire DynFluid, Arts et Métiers ParisTech, 75013 Paris, France
F. Grasso
Affiliation:
Laboratoire DynFluid, Arts et Métiers ParisTech, 75013 Paris, France Laboratoire DynFluid, Conservatoire National des Arts et Métiers, 75003 Paris, France
*
Email address for correspondence: paola.cinnella@ensam.eu

Abstract

A detailed numerical study of the influence of dense gas effects on the large-scale dynamics of decaying homogeneous isotropic turbulence is carried out by using the van der Waals gas model. More specifically, we focus on dense gases of the Bethe–Zel’dovich–Thompson type, which may exhibit non-classical nonlinearities in the transonic and supersonic flow regimes, under suitable thermodynamic conditions. The simulations are based on the inviscid conservation equations, solved by means of a ninth-order numerical scheme. The simulations rely on the numerical viscosity of the scheme to dissipate energy at the finest scales, while leaving the larger scales mostly unaffected. The results are systematically compared with those obtained for a perfect gas. Dense gas effects are found to have a significant influence on the time evolution of the average and root mean square (r.m.s.) of the thermodynamic properties for flows characterized by sufficiently high initial turbulent Mach numbers (above 0.5), whereas the influence on kinematic properties, such as the kinetic energy and the vorticity, are smaller. However, the flow dilatational behaviour is very different, due to the non-classical variation of the speed of sound in flow regions where the dense gas is characterized by a value of the fundamental derivative of the gas dynamics (a measure of the variation of the speed of sound in isentropic compressions) smaller than one or even negative. The most significant differences between the perfect and the dense gas case are found for the repartition of dilatation levels in the flow field. For the perfect gas, strong compressions occupy a much larger volume fraction than expansion regions, leading to probability distributions of the velocity divergence highly skewed toward negative values. For the dense gas, the volume fractions occupied by strong expansion and compression regions are much more balanced; moreover, strong expansion regions are characterized by sheet-like structures, unlike the perfect gas which exhibits tubular structures. In strong compression regions, where compression shocklets may occur, both the dense and the perfect gas exhibit sheet-like structures. This suggests the possibility that expansion eddy shocklets may appear in the dense gas. This hypothesis is also supported by the fact that, in dense gas, vorticity is created with equal probability in strong compression and expansion regions, whereas for a perfect gas, vorticity is more likely to be created in the strong compression ones.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, K. 1991 A numerical study on the use of sulfur hexafluoride as a test gas for wind tunnels. AIAA J. 29, 21792181.Google Scholar
Argrow, B. 1996 Computational analysis of dense shock tube flow. Shock Waves 6, 241248.CrossRefGoogle Scholar
Bae, J. H., Yoo, J. Y. & Choi, H. 2005 Direct numerical simulation of turbulent supercritical flows with heat transfer. Phys. Fluids 17 (10), 105104.Google Scholar
Battista, F., Picano, F. & Casciola, C. M. 2014 Turbulent mixing of a slightly supercritical Van der Waals fluid at Low-Mach number. Phys. Fluids 26 (5), 055101.Google Scholar
Benzi, R., Biferale, L., Fisher, R. T., Kadanoff, L. P., Lamb, D. Q. & Toschi, F. 2008 Intermittency and universality in fully developed inviscid and weakly compressible turbulent flows. Phys. Rev. Lett. 100 (23), 234503.CrossRefGoogle ScholarPubMed
Bethe, H. A.1942 The theory of shock waves for an arbitrary equation of state. Tech. Rep. 545. Office of Scientific Research and Development.Google Scholar
Blaisdell, G., Mansour, N. & Reynolds, W. 1993 Compressibility effects on the growth ano structure of homogeneous turbulent shear flow. J. Fluid Mech. 256, 443485.Google Scholar
Bogey, C. & Bailly, C. 2004 A family of low dispersive and low dissipative explicit schemes for flow and noise computations. J. Comput. Phys. 194 (1), 194214.CrossRefGoogle Scholar
Borisov, A., Borisov, A. A., Kutateladze, S. & Nakaryakov, V. 1983 Rarefaction shock waves near the critic liquid-vapour point. J. Fluid Mech. 126, 5973.Google Scholar
Brown, B. & Argrow, B. 2000 Application of Bethe–Zel’dovich–Thompson fluids in organic Rankine cycle engines. J. Propul. Power 16 (6), 11181123.CrossRefGoogle Scholar
Brown, B. P. & Argrow, B. M. 1998 Nonclassical dense gas flows for simple geometries. AIAA J. 36 (10), 18421847.Google Scholar
Cinnella, P. & Congedo, P. 2007 Inviscid and viscous aerodynamics of dense gases. J. Fluid Mech. 580, 179217.Google Scholar
Cinnella, P. & Congedo, P. M. 2005 Aerodynamic performance of transonic Bethe–Zel’dovich–Thompson flows past an airfoil. AIAA J. 43, 370378.Google Scholar
Colonna, P., Guardone, A., Nannan, N. R. & Zamfirescu, C. 2008 Design of the dense gas flexible asymmetric shock tube. Trans. ASME J. Fluids Engng 130 (3), 034501.CrossRefGoogle Scholar
Cook, A. W. & Cabot, W. H. 2005 Hyperviscosity for shock-turbulence interactions. J. Comput. Phys. 203 (2), 379385.Google Scholar
Cramer, M. 1989a Negative nonlinearity in selected fluorocarbons. Phys. Fluids A 1 (11), 18941897.Google Scholar
Cramer, M. 1989b Shock splitting in single-phase gases. J. Fluid Mech. 199, 281296.CrossRefGoogle Scholar
Cramer, M. 1991 Nonclassical dynamics of classical gases. In Nonlinear Waves in Real Fluids, pp. 91145. Springer.CrossRefGoogle Scholar
Cramer, M. & Crickenberger, A. 1991 The dissipative structure of shock waves in dense gases. J. Fluid Mech. 223, 325355.Google Scholar
Cramer, M. & Fry, R. 1993 Nozzle flows of dense gases. Phys. Fluids A 5 (5), 12461259.CrossRefGoogle Scholar
Cramer, M. & Kluwick, A. 1984 On the propagation of waves exhibiting both positive and negative nonlinearity. J. Fluid Mech. 142, 937.Google Scholar
Cramer, M. & Park, S. 1999 On the suppression of shock-induced separation in Bethe–Zel’dovich–Thompson fluids. J. Fluid Mech. 393, 121.Google Scholar
Cramer, M. & Sen, R. 1986 Shock formation in fluids having embedded regions of negative nonlinearity. Phys. Fluids 29 (7), 21812191.CrossRefGoogle Scholar
Cramer, M. & Sen, R. 1987 Exact solutions for sonic shocks in van der Waals gases. Phys. Fluids 30 (2), 377385.CrossRefGoogle Scholar
Cramer, M. & Tarkenton, G. 1992 Transonic flows of Bethe–Zel’dovich–Thompson fluids. J. Fluid Mech. 240, 197228.Google Scholar
Donzis, D. A. & Jagannathan, S. 2016 Fluctuations of thermodynamic variables in stationary compressible turbulence. J. Fluid Mech. 733, 221244.Google Scholar
Ducros, F., Ferrand, V., Nicoud, F., Weber, C., Darracq, D., Gacherieu, C. & Poinsot, T. 1999 Large-eddy simulation of the shock/turbulence interaction. J. Comput. Phys. 152 (2), 517549.Google Scholar
Fergason, S., Ho, T., Argrow, B. & Emanuel, G. 2001 Theory for producing a single-phase rarefaction shock-wave in a shock tube. J. Fluid Mech. 445, 3754.Google Scholar
Garnier, E., Mossi, M., Sagaut, P., Comte, P. & Deville, M. 1999 On the use of shock-capturing schemes for large-eddy simulation. J. Comput. Phys. 153 (2), 273311.Google Scholar
Harinck, J., Guardone, A. & Colonna, P. 2009 The influence of molecular complexity on expanding flows of ideal and dense gases. Phys. Fluids 21 (8), 086101.CrossRefGoogle Scholar
Harinck, J., Turunen-Saaresti, T., Colonna, P., Rebay, S. & van Buijtenen, J. 2010 Computational study of a high-expansion ratio radial organic Rankine cycle turbine stator. J. Gas Turbines Power 132 (5), 054501.Google Scholar
Hinze, J. O. 1975 Turbulence. McGraw-Hill.Google Scholar
Horen, J., Talonpoika, T., Larjola, J. & Siikonen, T. 2002 Numerical simulation of real-gas flow in a supersonic turbine nozzle ring. Trans. ASME: J. Engng Gas Turbines Power 124 (2), 395403.Google Scholar
Jameson, A., Schmidt, W. & Turkel, E.1981 Numerical solutions of the Euler equations by finite volume methods using Runge–Kutta time-stepping schemes. AIAA Paper 81-1259.Google Scholar
Jiménez, J., Wray, A. A., Saffman, P. G. & Rogallo, R. S. 1993 The structure of intense vorticity in isotropic turbulence. J. Fluid Mech. 255, 6590.Google Scholar
Kim, J. W. & Lee, D. J. 2001 Adaptive nonlinear artificial dissipation model for computational aeroacoustics. AIAA J. 39, 810818.Google Scholar
Kirillov, N. 2004 Analysis of modern natural gas liquefaction technologies. Chem. Petrol. Engng 40 (7–8), 401406.Google Scholar
Kluwick, A. 2004 Internal flows of dense gases. Acta Mechanica 169 (1–4), 123143.Google Scholar
Kluwick, A. & Meyer, G. 2010 Shock regularization in dense gases by viscous–inviscid interactions. J. Fluid Mech. 644, 473507.Google Scholar
Kluwick, A. & Meyer, G. 2011 Viscous–inviscid interactions in transonic flows through slender nozzles. J. Fluid Mech. 672, 487520.CrossRefGoogle Scholar
Kluwick, A. & Wrabel, A. 2004 Shock boundary layer interactions in dense gases. Proc. Appl. Maths Mech. 4, 444445.CrossRefGoogle Scholar
Kritsuk, A. G., Norman, M. L., Padoan, P. & Wagner, R. 2007 The statistics of supersonic isothermal turbulence. Astrophys. J. 665 (1), 416431.Google Scholar
Kutateladze, S., Nakaryakov, V. & Borisov, A. A. 1987 Rarefaction waves in liquid and gas–liquid media. Annu. Rev. Fluid Mech. 19, 577600.CrossRefGoogle Scholar
Lamorgese, A., Caughey, D. & Pope, S. B. 2005 Direct numerical simulation of homogeneous turbulence with hyperviscosity. Phys. Fluids 17 (1), 015106.CrossRefGoogle Scholar
Lesieur, M. 2008 Turbulence in Fluids, Fluid Mechanics and its Applications. Springer.Google Scholar
Liu, X.-D., Osher, S. & Chan, T. 1994 Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115 (1), 200212.Google Scholar
Menikoff, R. & Plohr, B. 1989 The Riemann problem for fluid flow of real materials. Rev. Mod. Phys. 61, 75130.Google Scholar
Moisy, F. & Jiménez, J. 2004 Geometry and clustering of intense structures in isotropic turbulence. J. Fluid Mech. 513, 111133.Google Scholar
Monaco, J., Cramer, M. & Watson, L. 1997 Supersonic flows of dense gases in cascade configurations. J. Fluid Mech. 330, 3159.Google Scholar
Okong’o, N. A. & Bellan, J. 2002 Direct numerical simulation of a transitional supercritical binary mixing layer: heptane and nitrogen. J. Fluid Mech. 464, 134.Google Scholar
Okong’o, N. A. & Bellan, J. 2010 Small-scale dissipation in binary-species, thermodynamically supercritical, transitional mixing layers. Comput. Fluids 39, 11121124.CrossRefGoogle Scholar
Outtier, P.-Y., Content, C., Cinnella, P. & Michel, B. 2013 The high-order dynamic computational laboratory for CFD research and applications. In 21st AIAA Computational Fluid Dynamics Conference, American Institute of Aeronautics and Astronautics.Google Scholar
Passot, T. & Pouquet, A. 1987 Numerical simulation of compressible homogeneous flows in the turbulent regime. J. Fluid Mech. 181, 441466.CrossRefGoogle Scholar
Pirozzoli, S. & Grasso, F. 2004 Direct numerical simulations of isotropic compressible turbulence: influence of compressibility on dynamics and structures. Phys. Fluids 16 (12), 43864407.Google Scholar
Porter, D., Pouquet, A., Sytine, I. & Woodward, P. 1999 Turbulence in compressible flows. Physica A 263 (1), 263270.CrossRefGoogle Scholar
Porter, D., Pouquet, A. & Woodward, P. 1992a Three-dimensional supersonic homogeneous turbulence: a numerical study. Phys. Rev. Lett. 68 (21), 3156.Google Scholar
Porter, D., Pouquet, A. & Woodward, P. 2002 Measures of intermittency in driven supersonic flows. Phys. Rev. E 66 (2), 026301.Google Scholar
Porter, D. H., Pouquet, A. & Woodward, P. R. 1992b A numerical study of supersonic turbulence. Theor. Comput. Fluid Dyn. 4 (1), 1349.CrossRefGoogle Scholar
Porter, D. H., Pouquet, A. & Woodward, P. R. 1994 Kolmogorov-like spectra in decaying three-dimensional supersonic flows. Phys. Fluids 6 (6), 21332142.Google Scholar
Porter, D. H., Woodward, P. R. & Pouquet, A. 1998 Inertial range structures in decaying compressible turbulent flows. Phys. Fluids 10 (1), 237245.Google Scholar
Ristorcelli, J. & Blaisdell, G. A. 1997 Consistent initial conditions for the DNS of compressible turbulence. Phys. Fluids 9 (1), 46.Google Scholar
Rusak, Z. & Wang, C.-W. 1997 Transonic flow of dense gases around an airfoil with a parabolic nose. J. Fluid Mech. 346, 121.Google Scholar
Rusak, Z. & Wang, C.-W. 2000 Low-drag airfoils for transonic flow of dense gases. Z. Angew. Math. Phys. 51 (3), 467480.Google Scholar
Samtaney, R., Pullin, D. & Kosovic, B. 2001 Direct numerical simulation of decaying compressible turbulence and shocklet statistics. Phys. Fluids 13 (5), 14151430.Google Scholar
Sarkar, S., Erlebacher, G., Hussaini, M. & Kreiss, H. 1991 The analysis and modelling of dilatational terms in compressible turbulence. J. Fluid Mech. 227, 473493.CrossRefGoogle Scholar
Sciacovelli, L. & Cinnella, P. 2014 Numerical study of multistage transcritical organic rankine cycle axial turbines. J. Gas Turbines Power 136 (2), 082604.Google Scholar
Selle, L. & Schmitt, T. 2010 Large-eddy simulation of single-species flows under supercritical thermodynamic conditions. Combust. Sci. Technol. 182 (4–6), 392404.Google Scholar
Shu, C.-W. 1990 Numerical experiments on the accuracy of ENO and modified ENO schemes. J. Sci. Comput. 5 (2), 127149.Google Scholar
Shu, C.-W. & Osher, S. 1989 Efficient implementation of essentially non-oscillatory shock-capturing schemes, II. J. Comput. Phys. 83 (1), 3278.Google Scholar
Spinelli, A., Dossena, V., Gaetani, P., Osnaghi, C. & Colombo, D. 2010 Design of a test rig for organic vapours. In ASME Turbo Expo, Paper N. GT2010-22959, pp. 105120.Google Scholar
Sytine, I. V., Porter, D. H., Woodward, P. R., Hodson, S. W. & Winkler, K.-H. 2000 Convergence tests for the piecewise parabolic method and Navier–Stokes solutions for homogeneous compressible turbulence. J. Comput. Phys. 158 (2), 225238.Google Scholar
Tanahashi, M., Tominaga, Y., Shimura, M., Hashimoto, K. & Miyauchi, T. 2011 DNS of supercritical carbon dioxide turbulent channel flow. In Progress in Wall Turbulence: Understanding and Modeling, pp. 429436. Springer.Google Scholar
Thompson, P. A. 1971 A fundamental derivative in gasdynamics. Phys. Fluids 14 (9), 18431849.Google Scholar
Thompson, P. A. & Lambrakis, K. 1973 Negative shock waves. J. Fluid Mech. 60 (01), 187208.Google Scholar
Van der Waals, J.1873 Doctoral dissertation. PhD thesis, University of Leiden.Google Scholar
Van Leer, B. 1979 Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32 (1), 101136.CrossRefGoogle Scholar
Wang, C.-W. & Rusak, Z. 1999 Numerical studies of transonic BZT gas flows around thin airfoils. J. Fluid Mech. 396, 109141.Google Scholar
Wang, J., Shi, Y., Wang, L.-P., Xiao, Z., He, X. & Chen, S. 2012 Effect of compressibility on the small-scale structures in isotropic turbulence. J. Fluid Mech. 713, 588631.Google Scholar
Wheeler, A. P. & Ong, J. 2013 The role of dense gas dynamics on organic rankine cycle turbine performance. Trans. ASME: J. Engng Gas Turbines Power 135 (10), 102603.Google Scholar
Wheeler, A. P. S. & Ong, J. 2014 A study of the three-dimensional unsteady real-gas flows within a transonic ORC turbine. In ASME Turbo Expo 2014, Paper N. GT2014-25475, pp. V03BT26A003.Google Scholar
Zamfirescu, C. & Dincer, I. 2009 Performance investigation of high-temperature heat pumps with various BZT working fluids. Thermochim. Acta 488, 6677.Google Scholar
Zappoli, B., Bailly, D., Garrabos, Y., Le Neindre, B., Guenoun, P. & Beysens, D. 1990 Anomalous heat transport by the piston effect in supercritical fluids under zero gravity. Phys. Rev. A 41 (4), 2264.Google Scholar
Zel’Dovich, Y. B. & Raizer, Y. P. 1966 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Academic.Google Scholar