Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-02T18:36:20.221Z Has data issue: false hasContentIssue false

Departure from the statistical equilibrium of large scales in forced three-dimensional homogeneous isotropic turbulence

Published online by Cambridge University Press:  12 April 2024

Mengjie Ding
Affiliation:
Department of Mechanics and Engineering Science at College of Engineering, and State Key Laboratory for Turbulence and Complex Systems, Peking University, Beijing 100871, PR China
Jin-Han Xie*
Affiliation:
Department of Mechanics and Engineering Science at College of Engineering, and State Key Laboratory for Turbulence and Complex Systems, Peking University, Beijing 100871, PR China
Jianchun Wang
Affiliation:
Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
*
Email address for correspondence: jinhanxie@pku.edu.cn

Abstract

We study the statistically steady states of the forced dissipative three-dimensional homogeneous isotropic turbulence at scales larger than the forcing scale in real separation space. The probability density functions (p.d.f.s) of longitudinal velocity difference at large separations are close to, but deviate from, Gaussian, measured by their non-zero odd parts. The analytical expressions of the third-order longitudinal structure functions derived from the Kármán–Howarth–Monin equation prove that the odd-part p.d.f.s of velocity differences at large separations are small but non-zero. Specifically, when the forcing effect in the displacement space decays exponentially as the displacement tends to infinity, the odd-order longitudinal structure functions have a power-law decay with an exponent of $-$2, implying a significant coupling between large and small scales. Under the assumption that forcing controls the large-scale dynamics, we propose a conjugate regime to Kolmogorov's inertial range, independent of the forcing scale, to capture the odd parts of p.d.f.s. Thus, dynamics of large scales departs from the absolute equilibrium, and we can partially recover small-scale information without explicitly resolving small-scale dynamics. The departure from the statistical equilibrium is quantified and found to be viscosity-independent. Even though this departure is small, it is significant and should be considered when studying the large scales of the forced three-dimensional homogeneous isotropic turbulence.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexakis, A. & Biferale, L. 2018 Cascades and transitions in turbulent flows. Phys. Rep. 767, 1101.CrossRefGoogle Scholar
Alexakis, A. & Brachet, M.-E. 2019 On the thermal equilibrium state of large-scale flows. J. Fluid Mech. 872, 594625.CrossRefGoogle Scholar
Alexakis, A. & Brachet, M.-E. 2020 Energy fluxes in quasi-equilibrium flows. J. Fluid Mech. 884, A33.CrossRefGoogle Scholar
Balkovsky, E., Falkovich, G., Lebedev, V. & Shapiro, I.Ya. 1995 Large-scale properties of wave turbulence. Phys. Rev. E 52, 45374540.CrossRefGoogle ScholarPubMed
Batchelor, G.K. & Proudman, I. 1956 The large-scale structure of homogeneous turbulence. Phil. Trans. R. Soc. Lond. A 248, 369405.Google Scholar
Baudin, K., Fusaro, A., Krupa, K., Garnier, J., Rica, S., Millot, G. & Picozzi, A. 2020 Classical Rayleigh-jeans condensation of light waves: observation and thermodynamic characterization. Phys. Rev. Lett. 125, 244101.CrossRefGoogle ScholarPubMed
Bernard, D. 1999 Three-point velocity correlation functions in two-dimensional forced turbulence. Phys. Rev. E 60, 61846187.CrossRefGoogle ScholarPubMed
Borue, V. & Orszag, S.A. 1996 Numerical study of three-dimensional Kolmogorov flow at high Reynolds numbers. J. Fluid Mech. 306, 293323.CrossRefGoogle Scholar
Cameron, A., Alexakis, A. & Brachet, M.-E. 2017 Effect of helicity on the correlation time of large scales in turbulent flows. Phys. Rev. Fluids 2, 114602.CrossRefGoogle Scholar
Chen, S. & Shan, X. 1992 High-resolution turbulent simulations using the connection machine-2. Comput. Phys. 6, 643646.CrossRefGoogle Scholar
Cichowlas, C., Bonaïti, P., Debbasch, F. & Brachet, M.-E. 2005 Effective dissipation and turbulence in spectrally truncated Euler flows. Phys. Rev. Lett. 95, 264502.CrossRefGoogle ScholarPubMed
Dallas, V., Fauve, S. & Alexakis, A. 2015 Statistical equilibria of large scales in dissipative hydrodynamic turbulence. Phys. Rev. Lett. 115, 204501.CrossRefGoogle ScholarPubMed
Davidson, P.A. 2015 Turbulence: An Introduction for Scientists and Engineers. Oxford University Press.CrossRefGoogle Scholar
Davidson, P.A. & Pearson, B.R. 2005 Identifying turbulent energy distributions in real, rather than Fourier, space. Phys. Rev. Lett. 95, 214501.CrossRefGoogle ScholarPubMed
Eyink, G.L. 2005 Locality of turbulent cascades. Physica D 207, 91116.CrossRefGoogle Scholar
Frisch, U. 1995 Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Gorce, J.-B. & Falcon, E. 2022 Statistical equilibrium of large scales in three-dimensional hydrodynamic turbulence. Phys. Rev. Lett. 129, 054501.CrossRefGoogle ScholarPubMed
Hopf, E. 1952 Statistical hydromechanics and functional calculus. J. Ration. Mech. Anal. 1, 87123.Google Scholar
Hosking, D.N. & Schekochihin, A.A. 2023 Emergence of long-range correlations and thermal spectra in forced turbulence. J. Fluid Mech. 973, A13.CrossRefGoogle Scholar
von Kármán, T. & Howarth, L. 1938 On the statistical theory of isotropic turbulence. Proc. R. Soc. Lond. Lond. A 164, 192215.CrossRefGoogle Scholar
Kolmogorov, A.N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl. Akad. Nauk SSSR 30, 913.Google Scholar
Kraichnan, R.H. 1973 Helical turbulence and absolute equilibrium. J. Fluid Mech. 59, 745752.CrossRefGoogle Scholar
Lee, T.D. 1952 On some statistical properties of hydrodynamical and magneto-hydrodynamical fields. Q. Appl. Maths 10, 6974.CrossRefGoogle Scholar
Lesieur, M. 1997 Turbulence in fluids, 3rd revised and enlarged ed., vol 40. In: Fluid Mechanics and its Applications. Kluwer Academic.CrossRefGoogle Scholar
Lindborg, E. 1999 Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence? J. Fluid Mech. 388, 259288.CrossRefGoogle Scholar
Linkmann, M. & Dallas, V. 2016 Large-scale dynamics of magnetic helicity. Phys. Rev. E 94, 053209.CrossRefGoogle ScholarPubMed
Linkmann, M. & Dallas, V. 2017 Triad interactions and the bidirectional turbulent cascade of magnetic helicity. Phys. Rev. Fluids 2, 054605.CrossRefGoogle Scholar
Michel, G., Pétrélis, F. & Fauve, S. 2017 Observation of thermal equilibrium in capillary wave turbulence. Phys. Rev. Lett. 118, 144502.CrossRefGoogle ScholarPubMed
Miquel, B., Naert, A. & Aumaître, S. 2021 Low-frequency spectra of bending wave turbulence. Phys. Rev. E 103, L061001.CrossRefGoogle ScholarPubMed
Monin, A.S. & Yaglom, A.M. 1975 Statistical Fluid Mechanics: Mechanics of Turbulence, vol. 2. MIT.Google Scholar
Obukhov, A.M. 1941 The spectral energy distribution in a turbulent flow. Dokl. Akad. Nauk SSSR 32, 2224.Google Scholar
Orszag, S.A. 1977 Lectures on the statistical theory of turbulence. In Fluid Dynamics. Les Houches Summer School, 1973 (ed. R. Balian & J.-L. Peube). Gordon and Breach.Google Scholar
Rose, H.A. & Sulem, P.L. 1978 Fully developed turbulence and statistical mechanics. J. Phys. 39, 441484.CrossRefGoogle Scholar
Saffman, P.G. 1967 The large-scale structure of homogeneous turbulence. J. Fluid Mech. 27, 581593.CrossRefGoogle Scholar
Srinivasan, K. & Young, W.R. 2012 Zonostrophic instability. J. Atmos. Sci. 69, 16331656.CrossRefGoogle Scholar
Xie, J.-H. & Bühler, O. 2018 Exact third-order structure functions for two-dimensional turbulence. J. Fluid Mech. 851, 672686.CrossRefGoogle Scholar
Xie, J.-H. & Bühler, O. 2019 Third-order structure functions for isotropic turbulence with bidirectional energy transfer. J. Fluid Mech. 877, R3.CrossRefGoogle Scholar