Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-14T07:09:32.616Z Has data issue: false hasContentIssue false

Diffusiophoresis in narrow channel flows

Published online by Cambridge University Press:  10 September 2018

Jesse T. Ault*
Affiliation:
Biomedical Sciences, Engineering, and Computing Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Sangwoo Shin
Affiliation:
Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
Howard A. Stone
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
*
Email address for correspondence: aultjt@ornl.gov

Abstract

Flows containing suspended colloidal particles and dissolved solutes are found in a multitude of natural and man-made systems including hydraulic fractures, water filtration systems and microfluidic devices, e.g. those designed for biological or medical applications. In these types of systems, unexpected particle dynamics such as rapid particle transport and focusing has been observed in the presence of local solute gradients due to the cooperating or competing effects of fluid advection and particle diffusiophoresis, the latter driven by local chemical gradients. We develop analytical expressions for the fluid, solute and particle dynamics in long, narrow channels due to the combined influence of pressure-driven channel flow with diffusiophoretic and diffusioosmotic effects. The results confirm a rapid particle focusing effect that can be controlled by manipulating the particle, solute and flow properties, as well as the channel’s geometry and surface chemistry. Thus, we propose a new approach for performing microfluidic zeta potentiometry, as well as techniques for sorting, concentrating and/or capturing particles based on their sizes or zeta potentials. Finally, we demonstrate that diffusioosmotic effects can be used to pump fluid against a pressure gradient.

Type
JFM Papers
Copyright
© Cambridge University Press 2018. Parts of this are a work of the US Government and not subject to copyright protection in the United States. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abécassis, B., Cottin-Bizonne, C., Ybert, C., Ajdari, A. & Bocquet, L. 2008 Boosting migration of large particles by solute contrasts. Nat. Mater. 7 (10), 785789.Google Scholar
Anderson, J. L. 1989 Colloid transport by interfacial forces. Annu. Rev. Fluid Mech. 21 (1), 6199.Google Scholar
Ault, J. T., Warren, P. B., Shin, S. & Stone, H. A. 2017 Diffusiophoresis in one-dimensional solute gradients. Soft Matt. 13 (47), 90159023.Google Scholar
Banerjee, A., Williams, I., Azevedo, R. N., Helgeson, M. E. & Squires, T. M. 2016 Soluto-inertial phenomena: designing long-range, long-lasting, surface-specific interactions in suspensions. Proc. Natl Acad. Sci. USA 113 (31), 86128617.Google Scholar
Brady, J. F. 2011 Particle motion driven by solute gradients with application to autonomous motion: continuum and colloidal perspectives. J. Fluid Mech. 667, 216259.Google Scholar
Derjaguin, B. V., Dukhin, S. S. & Korotkova, A. A. 1961 Diffusiophoresis in electrolyte solutions and its role in mechanism of film formation from rubber latexes by method of ionic deposition. Colloid J. USSR 23 (1), 53.Google Scholar
Derjaguin, B. V., Sidorenkov, G. P., Zubashchenkov, E. A. & Kiseleva, E. V. 1947 Kinetic phenomena in boundary films of liquids. Colloid J. USSR 9, 335347.Google Scholar
Duhr, S. & Braun, D. 2006 Optothermal molecule trapping by opposing fluid flow with thermophoretic drift. Phys. Rev. Lett. 97 (3), 038103.Google Scholar
Fan, Y., Shin, S. & Stone, H. A. 2018 Diffusiophoresis of a charged drop. J. Fluid Mech. 852, 3759.Google Scholar
Ferziger, J. H. & Peric, M. 2012 Computational Methods for Fluid Dynamics. Springer Science and Business Media.Google Scholar
Florea, D., Musa, S., Huyghe, J. M. R. & Wyss, H. M. 2014 Long-range repulsion of colloids driven by ion exchange and diffusiophoresis. Proc. Natl Acad. Sci. USA 111 (18), 65546559.Google Scholar
Friedrich, S. M., Burke, J. M., Liu, K. J., Ivory, C. F. & Wang, T.-H. 2017 Molecular rheotaxis directs DNA migration and concentration against a pressure-driven flow. Nat. Commun. 8 (1), 1213.Google Scholar
Kar, A., Chiang, T.-Y., Rivera, I. O., Sen, A. & Velegol, D. 2015 Enhanced transport into and out of dead-end pores. ACS Nano 9 (1), 746753.Google Scholar
Kirby, B. J. 2010 Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices. Cambridge University Press.Google Scholar
Kirby, B. J. & Hasselbrink, E. F. 2004 Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis 25 (2), 187202.Google Scholar
Lee, C., Cottin-Bizonne, C., Biance, A.-L., Joseph, P., Bocquet, L. & Ybert, C. 2014 Osmotic flow through fully permeable nanochannels. Phys. Rev. Lett. 112 (24), 244501.Google Scholar
Maeda, Y. T., Buguin, A. & Libchaber, A. 2011 Thermal separation: interplay between the Soret effect and entropic force gradient. Phys. Rev. Lett. 107 (3), 038301.Google Scholar
Manz, A., Effenhauser, C. S., Burggraf, N., Harrison, D. J., Seiler, K. & Fluri, K. 1994 Electroosmotic pumping and electrophoretic separations for miniaturized chemical analysis systems. J. Micromech. Microengng 4 (4), 257265.Google Scholar
Nery-Azevedo, R., Banerjee, A. & Squires, T. M. 2017 Diffusiophoresis in ionic surfactant gradients. Langmuir 33 (38), 96949702.Google Scholar
Palacci, J., Abécassis, B., Cottin-Bizonne, C., Ybert, C. & Bocquet, L. 2010 Colloidal motility and pattern formation under rectified diffusiophoresis. Phys. Rev. Lett. 104 (13), 138302.Google Scholar
Palacci, J., Cottin-Bizonne, C., Ybert, C. & Bocquet, L. 2012 Osmotic traps for colloids and macromolecules based on logarithmic sensing in salt taxis. Soft Matt. 8 (4), 980994.Google Scholar
Paustian, J. S., Azevedo, R. N., Lundin, S.-T. B., Gilkey, M. J. & Squires, T. M. 2013 Microfluidic microdialysis: spatiotemporal control over solution microenvironments using integrated hydrogel membrane microwindows. Phys. Rev. X 3 (4), 041010.Google Scholar
Prieve, D. C., Anderson, J. L., Ebel, J. P. & Lowell, M. E. 1984 Motion of a particle generated by chemical gradients. Part 2. Electrolytes. J. Fluid Mech. 148, 247269.Google Scholar
Prieve, D. C. & Roman, R. 1987 Diffusiophoresis of a rigid sphere through a viscous electrolyte solution. J. Chem. Soc. Faraday Trans. 83 (8), 12871306.Google Scholar
Shi, N., Nery-Azevedo, R., Abdel-Fattah, A. I. & Squires, T. M. 2016 Diffusiophoretic focusing of suspended colloids. Phys. Rev. Lett. 117 (25), 258001.Google Scholar
Shin, S., Ault, J. T., Feng, J., Warren, P. B. & Stone, H. A. 2017a Low-cost zeta potentiometry using solute gradients. Adv. Mater. 29 (30), 1701516.Google Scholar
Shin, S., Ault, J. T., Warren, P. B. & Stone, H. A. 2017b Accumulation of colloidal particles in flow junctions induced by fluid flow and diffusiophoresis. Phys. Rev. X 7 (4), 041038.Google Scholar
Shin, S., Shardt, O., Warren, P. B. & Stone, H. A. 2017c Membraneless water filtration using CO2. Nat. Commun. 8, 15181.Google Scholar
Shin, S., Um, E., Sabass, B., Ault, J. T., Rahimi, M., Warren, P. B. & Stone, H. A. 2016 Size-dependent control of colloid transport via solute gradients in dead-end channels. Proc. Natl Acad. Sci. USA 113 (2), 257261.Google Scholar
Staffeld, P. O. & Quinn, J. A. 1989 Diffusion-induced banding of colloid particles via diffusiophoresis: 1. Electrolytes. J. Colloid Interface Sci. 130 (1), 6987.Google Scholar
Stein, D., Deurvorst, Z., van der Heyden, F. H. J., Koopmans, W. J. A., Gabel, A. & Dekker, C. 2010 Electrokinetic concentration of DNA polymers in nanofluidic channels. Nano Lett. 10 (3), 765772.Google Scholar
Stout, R. F. & Khair, A. S. 2017 Influence of ion sterics on diffusiophoresis and electrophoresis in concentrated electrolytes. Phys. Rev. Fluids 2 (1), 014201.Google Scholar
Weller, H. G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to continuum mechanics using object-oriented techniques. Comput. Phys. 12, 620631.Google Scholar