Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T06:32:10.718Z Has data issue: false hasContentIssue false

Direct numerical simulation of a turbulent jet impinging on a heated wall

Published online by Cambridge University Press:  05 January 2015

T. Dairay*
Affiliation:
Turbulence, Mixing and Flow Control Group, Department of Aeronautics, Imperial College London, London SW7 2AZ, UK
V. Fortuné
Affiliation:
Institute PPRIME, Department of Fluid Flow, Heat Transfer and Combustion, CNRS – Université de Poitiers ENSMA, Téléport 2, Boulevard Marie et Pierre Curie, BP 30179, 86962 Futuroscope Chasseneuil CEDEX, France
E. Lamballais
Affiliation:
Institute PPRIME, Department of Fluid Flow, Heat Transfer and Combustion, CNRS – Université de Poitiers ENSMA, Téléport 2, Boulevard Marie et Pierre Curie, BP 30179, 86962 Futuroscope Chasseneuil CEDEX, France
L.-E. Brizzi
Affiliation:
Institute PPRIME, Department of Fluid Flow, Heat Transfer and Combustion, CNRS – Université de Poitiers ENSMA, Téléport 2, Boulevard Marie et Pierre Curie, BP 30179, 86962 Futuroscope Chasseneuil CEDEX, France
*
Email address for correspondence: tdairay@hotmail.fr

Abstract

Direct numerical simulation (DNS) of an impinging jet flow with a nozzle-to-plate distance of two jet diameters and a Reynolds number of 10 000 is carried out at high spatial resolution using high-order numerical methods. The flow configuration is designed to enable the development of a fully turbulent regime with the appearance of a well-marked secondary maximum in the radial distribution of the mean heat transfer. The velocity and temperature statistics are validated with documented experiments. The DNS database is then analysed focusing on the role of unsteady processes to explain the spatial distribution of the heat transfer coefficient at the wall. A phenomenological scenario is proposed on the basis of instantaneous flow visualisations in order to explain the non-monotonic radial evolution of the Nusselt number in the stagnation region. This scenario is then assessed by analysing the wall temperature and the wall shear stress distributions and also through the use of conditional averaging of velocity and temperature fields. On one hand, the heat transfer is primarily driven by the large-scale toroidal primary and secondary vortices emitted periodically. On the other hand, these vortices are subjected to azimuthal distortions associated with the production of radially elongated structures at small scale. These distortions are responsible for the appearance of very high heat transfer zones organised as cold fluid spots on the heated wall. These cold spots are shaped by the radial structures through a filament propagation of the heat transfer. The analysis of probability density functions shows that these strong events are highly intermittent in time and space while contributing essentially to the secondary peak observed in the radial evolution of the Nusselt number.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashforth-Frost, S., Jambunathan, K. & Whitney, C. F. 1997 Velocity and turbulence characteristics of a semiconfined orthogonally impinging slot jet. Exp. Therm. Fluid Sci. 14 (1), 6067.Google Scholar
Baughn, J. W. & Shimizu, S. 1989 Heat transfer measurements from a surface with uniform heat flux and an impinging jet. Trans. ASME J. Heat Transfer 111, 10961098.CrossRefGoogle Scholar
Beaubert, F. & Viazzo, S. 2003 Large eddy simulations of plane turbulent impinging jets at moderate Reynolds numbers. Intl J. Heat Fluid Flow 24 (4), 512519.Google Scholar
Blackwelder, R. F. & Kaplan, R. E. 1976 On the wall structure of the turbulent boundary layer. J. Fluid Mech. 76 (1), 89112.Google Scholar
Buchlin, J. M. 2011 Convective heat transfer in impinging-gas-jet arrangements. J. Appl. Fluid Mech. 4 (2), 137149.Google Scholar
Chung, Y. M. & Luo, K. H. 2002 Unsteady heat transfer analysis of an impinging jet. Trans. ASME J. Heat Transfer 124 (6), 10391048.Google Scholar
Chung, Y. M., Luo, K. H. & Sandham, N. D. 2002 Numerical study of momentum and heat transfer in unsteady impinging jets. Intl J. Heat Fluid Flow 23 (5), 592600.CrossRefGoogle Scholar
Cooper, D., Jackson, D. C., Launder, B. E. & Liao, G. X. 1993 Impinging jet studies for turbulence model assessment – I. Flow-field experiments. Intl J. Heat Mass Transfer 36 (10), 26752684.Google Scholar
Dailey, G. M. 2000 Design and calculation issues. In Aero-Thermal Performance of Internal Cooling Systems in Turbomachines, VKI for Fluid Dynamics Lecture Series, vol. 3, pp. A1A70.Google Scholar
Dairay, T., Fortuné, V., Lamballais, E. & Brizzi, L. E. 2014 LES of a turbulent jet impinging on a heated wall using high-order numerical schemes. Intl J. Heat Fluid Flow 50, 177187.CrossRefGoogle Scholar
Deshpande, M. D. & Vaishnav, R. N. 1982 Submerged laminar jet impingement on a plane. J. Fluid Mech. 114, 213226.CrossRefGoogle Scholar
Dewan, A., Dutta, R. & Srinivasan, B. 2012 Recent trends in computation of turbulent jet impingement heat transfer. Heat Transfer Engng 33 (4–5), 447460.Google Scholar
Didden, N. & Ho, C.-M. 1985 Unsteady separation in a boundary layer produced by an impinging jet. J. Fluid Mech. 160, 235256.Google Scholar
Dubief, Y. & Delcayre, F. 2000 On coherent-vortex identification in turbulence. J. Turbul. 1, 122.Google Scholar
El Hassan, M., Assoum, H. H., Sobolik, V., Vétel, J., Abed-Meraim, K., Garon, A. & Sakout, A. 2012 Experimental investigation of the wall shear stress and the vortex dynamics in a circular impinging jet. Exp. Fluids 52 (6), 14751489.Google Scholar
Gardon, R. & Akfirat, J. C. 1965 The role of turbulence in determining the heat-transfer characteristics of impinging jets. Intl J. Heat Mass Transfer 8 (10), 12611272.Google Scholar
Gauntner, J. W., Livingood, J. N. B. & Hrycak, P.1970 Survey of literature on flow characteristics of a single turbulent jet impinging on a flat plate. NASA Tech. Rep. TN D-5652 NTIS N70-18963.Google Scholar
Hadziabdic, M. & Hanjalic, K. 2008 Vortical structures and heat transfer in a round impinging jet. J. Fluid Mech. 596, 221260.CrossRefGoogle Scholar
Hall, J. W. & Ewing, D. 2006 On the dynamics of the large-scale structures in round impinging jets. J. Fluid Mech. 555, 439458.CrossRefGoogle Scholar
Hunt, J. C. R., Wray, A. A. & Moin, P.1988 Eddies, stream and convergence zones in turbulent flows. Report CTR-S88, Center For Turbulence Research.Google Scholar
Jambunathan, K., Lai, R., Moss, A. & Button, B. L. 1992 A review of heat transfer data for single circular jet impingement. Intl J. Heat Fluid Flow 13, 106115.CrossRefGoogle Scholar
Kim, J. 1985 Turbulence structures associated with the bursting event. Phys. Fluids 28, 5258.Google Scholar
Kravchenko, A. G. & Moin, P. 1997 On the effect of numerical errors in large eddy simulation of turbulent flows. J. Comput. Phys. 131, 310322.Google Scholar
Laizet, S. & Lamballais, E. 2009 High-order compact schemes for incompressible flows: a simple and efficient method with quasi-spectral accuracy. J. Comput. Phys. 228, 59896015.CrossRefGoogle Scholar
Laizet, S., Lamballais, E. & Vassilicos, J. C. 2010 A numerical strategy to combine high-order schemes, complex geometry and parallel computing for high resolution DNS of fractal generated turbulence. Comput. Fluids 39 (3), 471484.Google Scholar
Laizet, S. & Li, N. 2011 Incompact3d: a powerful tool to tackle turbulence problems with up to $O(10^{5})$ computational cores. Intl J. Numer. Meth. Fluids 67 (11), 17351757.Google Scholar
Lamballais, E., Fortuné, V. & Laizet, S. 2011 Straightforward high-order numerical dissipation via the viscous term for direct and large eddy simulation. J. Comput. Phys. 230, 32703275.Google Scholar
Lee, J. & Lee, S.-J. 1999 Stagnation region heat transfer of a turbulent axisymmetric jet impingement. Expl Heat Transfer 12 (2), 137156.CrossRefGoogle Scholar
Lele, S. K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 1642.Google Scholar
Lesieur, M., Métais, O. & Comte, P. 2005 Large-Eddy Simulation of Turbulence. Cambridge University Press.Google Scholar
Lodato, G., Vervisch, L. & Domingo, P. 2009 A compressible wall-adapting similarity mixed model for large-eddy simulation of the impinging round jet. Phys. Fluids 21 (3), 035102.Google Scholar
Lytle, D. & Webb, B. W. 1994 Air jet impingement heat transfer at low nozzle–plate spacings. Intl J. Heat Mass Transfer 37, 16871697.Google Scholar
Manceau, R., Carpy, S. & Alfano, D. 2002 A rescaled $\overline{v^{2}}f$ model: first application to separated and impinging flows. Engng Turbul. Modelling Exp. 5, 107116.CrossRefGoogle Scholar
Martin, H. 1977 Heat and mass transfer between impinging gas jets and solid surfaces. Adv. Heat Transfer 13, 160.CrossRefGoogle Scholar
Miller, P. 1995 A study of wall jets resulting from single and multiple inclined jet impingement. Aeronaut. J. 99 (986), 201216.Google Scholar
Moin, P. & Mahesh, K. 1998 Direct numerical simulation: a tool in turbulence research. Annu. Rev. Fluid Mech. 30, 539578.CrossRefGoogle Scholar
Narayanan, V. & Patil, V. A. 2007 Oscillatory thermal structures induced by unconfined slot jet impingement. Exp. Therm. Fluid Sci. 32 (2), 682695.Google Scholar
Nordstrom, J., Nordin, N. & Henningson, D. S. 1999 The fringe region technique and the Fourier method used in the direct numerical simulation of spatially evolving viscous flows. SIAM J. Sci. Comput. 20 (4), 13651393.CrossRefGoogle Scholar
Obot, N. T., Douglas, W. J. M. & Mujumdar, A. S.1982 Effect of semi-confinement on impingement heat transfer. In Proceedings of 7th International Heat Transfer Conference, vol. 3, pp. 395–400.Google Scholar
O’Donovan, T. S. & Murray, D. B. 2007 Jet impingement heat transfer – part II: a temporal investigation of heat transfer and local fluid velocities. Intl J. Heat Mass Transfer 50, 33023314.Google Scholar
Orlandi, P. & Verzicco, R. 1993 Vortex rings impinging on walls: axisymmetric and three-dimensional simulations. J. Fluid Mech. 256, 615646.Google Scholar
Popiel, C. O. & Trass, O. 1991 Visualization of a free and impinging round jet. Exp. Therm. Fluid Sci. 4, 253264.Google Scholar
Rohlfs, W., Haustein, H. D., Garbrecht, O. & Kneer, R. 2012 Insights into the local heat transfer of a submerged impinging jet: influence of local flow acceleration and vortex–wall interaction. Intl J. Heat Mass Transfer 55 (25), 77287736.CrossRefGoogle Scholar
Roux, S., Fénot, M., Lalizel, G., Brizzi, L.-E. & Dorignac, E. 2011 Experimental investigation of the flow and heat transfer of an impinging jet under acoustic excitation. Intl J. Heat Mass Transfer 54 (15), 32773290.Google Scholar
Roux, S., Fénot, M., Lalizel, G., Brizzi, L.-E. & Dorignac, E. 2014 Evidence of flow vortex signatures on wall fluctuating temperature using unsteady infrared thermography for an acoustically forced impinging jet. Intl J. Heat Fluid Flow 50, 3850.Google Scholar
Sagaut, P. 2005 Large Eddy Simulation of Incompressible Flow: An Introduction, 2nd edn. Springer.Google Scholar
Swearingen, J. D., Crouch, J. D. & Handler, R. A. 1995 Dynamics and stability of a vortex ring impacting a solid boundary. J. Fluid Mech. 297, 128.CrossRefGoogle Scholar
Tsubokura, M., Kobayashi, T., Tanigushi, N. & Jones, W. P. 2003 A numerical study on the eddy structures of impinging jet excited at the inlet. Intl J. Heat Fluid Flow 24, 500511.Google Scholar
Uddin, N., Neumann, S.-O. & Weigand, B. 2013 LES simulations of an impinging jet: on the origin of the second peak in the Nusselt number distribution. Intl J. Heat Mass Transfer 57 (1), 356368.CrossRefGoogle Scholar
Vejrazka, J., Tihon, J., Marty, P. & Sobolik, V. 2005 Effect of an external excitation on the flow structure in a circular impinging jet. Phys. Fluids 17, 114.CrossRefGoogle Scholar
Violato, D., Ianiro, A., Cardone, G. & Scarano, F. 2012 Three-dimensional vortex dynamics and convective heat transfer in circular and chevron impinging jets. Intl J. Heat Fluid Flow 37, 2236.Google Scholar
Viskanta, R. 1993 Heat transfer to impinging isothermal gas and flame jets. Exp. Therm. Fluid Sci. 6 (2), 111134.Google Scholar
Walker, J. D. A., Smith, C. R., Cerra, A. W. & Doligalski, T. L. 1987 The impact of a vortex ring on a wall. J. Fluid Mech. 181, 99140.Google Scholar
Webb, B. W. & Ma, C.-F. 1995 Single-phase liquid jet impingement heat transfer. Adv. Heat Transfer 26, 105217.Google Scholar
Wilke, R. & Sesterhenn, J. 2015 Direct numerical simulation of heat transfer of a round subsonic impinging jet. In Active Flow and Combustion Control 2014, pp. 147159. Springer.Google Scholar
Yeh, F. C. & Stepka, F. S.1984 Review and status of heat-transfer technology for internal passages of air-cooled turbine blades. NASA Tech. Rep. 2232.Google Scholar