Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T16:51:58.813Z Has data issue: false hasContentIssue false

Direct numerical simulation of inertial particle entrainment in a shearless mixing layer

Published online by Cambridge University Press:  02 July 2012

Peter J. Ireland
Affiliation:
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA International Collaboration for Turbulence Research
Lance R. Collins*
Affiliation:
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA International Collaboration for Turbulence Research
*
Email address for correspondence: lc246@cornell.edu

Abstract

We present the first computational study of the dynamics of inertial particles in a shearless turbulence mixing layer. We parametrize our direct numerical simulations to isolate the effects of turbulence, Reynolds number, particle inertia, and gravity on the entrainment process. By analysing particle concentrations, particle and fluid velocities, particle size distributions, and higher-order velocity moments, we explore the impact of particle inertia and gravity on the mechanism of turbulent mixing. We neglect thermodynamic processes, including phase changes between the drops and surrounding air, which is equivalent to assuming the air is saturated (i.e. 100 % humidity). Entrainment is found to be governed by the large scales of the flow and is relatively insensitive to the Reynolds number over the range considered. Our results show that both fluid and particle velocities exhibit intermittency and that gravity and turbulent diffusion interact in unexpected ways to dictate particle dynamics. An analysis of the temporal evolution of fluid and particle statistics suggests that particle concentration profiles and velocities are self-similar under certain circumstances. We also observe large fluctuations in particle concentrations resulting from entrainment and introduce a model to estimate the impact these fluctuations have on the radial distribution function, a statistic that is often used to quantify inertial particle clustering. Our study is both a computational counterpart to and an extension of the wind tunnel experiments by Gerashchenko, Good & Warhaft (J. Fluid Mech., vol. 668, 2011, pp. 293–303) and Good, Gerashchenko, & Warhaft (J. Fluid Mech., vol. 694, 2012, pp. 371–398). We find good agreement between these experimental studies and our computational results. We anticipate that a better understanding of the role of gravity and turbulence in inertial particle entrainment will lead to improved cloud evolution predictions.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Aliseda, A., Cartellier, A., Hainaux, F. & Lasheras, J. C. 2002 Effect of preferential concentration on the settling velocity of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 468, 77105.CrossRefGoogle Scholar
2. Ayyalasomayajula, S., Gylfason, A., Collins, L. R., Bodenschatz, E. & Warhaft, Z. 2006 Lagrangian measurements of inertial particle accelerations in grid generated wind tunnel turbulence. Phys. Rev. Lett. 97, 144507.CrossRefGoogle ScholarPubMed
3. Ayyalasomayajula, S., Warhaft, Z. & Collins, L. R. 2008 Modelling inertial particle acceleration statistics in isotropic turbulence. Phys. Fluids 20, 094104.CrossRefGoogle Scholar
4. Balachandar, S. & Eaton, J. K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.CrossRefGoogle Scholar
5. Batt, R. G. 1977 Turbulent mixing of passive and chemically reacting species in a low-speed shear layer. J. Fluid Mech. 82, 5395.CrossRefGoogle Scholar
6. Bec, J., Biferale, L., Boffetta, G., Celani, A., Cencini, M., Lanotte, A. S., Musacchio, S. & Toschi, F. 2006 Acceleration statistics of heavy particles in turbulence. J. Fluid Mech. 550, 349358.CrossRefGoogle Scholar
7. Bec, J., Biferale, L., Cencini, M., Lanotte, A. S., Musacchio, S. & Toschi, F. 2007 Heavy particle concentration in turbulence at dissipative and inertial scales. Phys. Rev. Lett. 98, 084502.CrossRefGoogle ScholarPubMed
8. Bisset, D. K., Hunt, J. C. R. & Rogers, M. M. 2002 The turbulent/non-turbulent interface bounding a far wake. J. Fluid Mech. 451, 383410.CrossRefGoogle Scholar
9. Blyth, A. M. 1993 Entrainment in cumulus clouds. J. Appl. Meteor. 32, 626641.2.0.CO;2>CrossRefGoogle Scholar
10. Bosse, T., Kleiser, L. & Meiburg, E. 2006 Small particles in homogeneous turbulence: settling velocity enhancement by two-way coupling. Phys. Fluids 18, 027102.CrossRefGoogle Scholar
11. Breidenthal, R. 1981 Structure in turbulent mixing layers and wakes using a chemical reaction. J. Fluid Mech. 109, 124.CrossRefGoogle Scholar
12. Briggs, D. A., Ferziger, J. H., Koseff, J. R. & Monismith, S. G. 1996 Entrainment in a shear-free turbulent mixing layer. J. Fluid Mech. 310, 215241.CrossRefGoogle Scholar
13. Broadwell, J. E. & Breidenthal, R. E. 1982 A simple model of mixing and chemical reaction in a turbulent shear layer. J. Fluid Mech. 125, 397410.CrossRefGoogle Scholar
14. Brucker, K. A., Isaza, J. C., Vaithianathan, T. & Collins, L. R. 2007 Efficient algorithm for simulating homogeneous turbulent shear flow without remeshing. J. Comp. Phys. 225, 2032.CrossRefGoogle Scholar
15. Clift, R., Grace, J. R. & Weber, M. E. 1978 Bubbles, Drops, and Particles. Academic.Google Scholar
16. Dahm, W. J. A. & Dimotakis, P. E. 1987 Measurements of entrainment and mixing the turbulent jets. AIAA J. 25, 12161223.CrossRefGoogle Scholar
17. Druzhinin, O. A. & Elghobashi, S. 1999 On the decay rate of isotropic turbulence laden with microparticles. Phys. Fluids 11, 602610.CrossRefGoogle Scholar
18. Eaton, J. K. & Fessler, J. R. 1994 Preferential concentration of particles by turbulence. Intl J. Multiphase Flow 20, 169209.CrossRefGoogle Scholar
19. Elghobashi, S. E. & Truesdell, G. C. 1992 Direct simulation of particle dispersion in a decaying isotropic turbulence. J. Fluid Mech. 242, 655.CrossRefGoogle Scholar
20. Elghobashi, S. E. & Truesdell, G. C. 1993 On the two-way interaction between homogeneous turbulence and dispersed particles. Part 1. Turbulence modification. Phys. Fluids A 5, 17901801.CrossRefGoogle Scholar
21. Eswaran, V. & Pope, S. B. 1988 Direct numerical simulations of the turbulent mixing of a passive scalar. Phys. Fluids 31, 506520.CrossRefGoogle Scholar
22. Fung, J. C. H. & Vassilicos, J. C. 2003 Inertial particle segregation by turbulence. Phys. Rev. E 68, 046309.CrossRefGoogle ScholarPubMed
23. Gerashchenko, S., Good, G. & Warhaft, Z. 2011 Entrainment and mixing of water droplets across a shearless turbulent interface with and without gravitational effects. J. Fluid Mech. 668, 293303.CrossRefGoogle Scholar
24. Gerashchenko, S., Sharp, N. S., Neuscamman, S. & Warhaft, Z. 2008 Lagrangian measurements of inertial particle accelerations in a turbulent boundary layer. J. Fluid Mech. 617, 255281.CrossRefGoogle Scholar
25. Good, G. H., Gerashchenko, S. & Warhaft, Z. 2012 Intermittency and inertial particle entrainment at a turbulent interface: the effect of the large-scale eddies. J. Fluid Mech. 694, 371398.CrossRefGoogle Scholar
26. Holtzer, G. L. & Collins, L. R. 2002 Relationship between the intrinsic radial distribution function for an isotropic field of particles and lower-dimensional measurements. J. Fluid Mech. 459, 93102.CrossRefGoogle Scholar
27. Holzner, M., Liberzon, A., Nikitin, N., Kinzelbach, W. & Tsinober, A. 2007 Small-scale aspects of flows in proximity of the turbulent/nonturbulent interface. Phys. Fluids 19, 071702.CrossRefGoogle Scholar
28. Holzner, M., Liberzon, A., Nikitin, N., Lüthi, B., Kinzelbach, W. & Tsinober, A. 2008 A Lagrangian investigation of the small-scale features of turbulent entrainment through particle tracking and direct numerical simulation. J. Fluid Mech. 598, 465475.CrossRefGoogle Scholar
29. Hwang, W. & Eaton, J. K. 2006 Homogeneous and isotropic turbulence modulation by small heavy particles. J. Fluid Mech. 564, 361393.CrossRefGoogle Scholar
30. Isaza, J. C. & Collins, L. R. 2009 On the asymptotic behaviour of large-scale turbulence in homogeneous shear flow. J. Fluid Mech. 637, 213239.CrossRefGoogle Scholar
31. de Jong, J., Salazar, J. P. L. C., Cao, L., Woodward, S. H., Collins, L. R. & Meng, H. 2010 Measurement of inertial particle clustering and relative velocity statistics in isotropic turbulence using holographic imaging. Intl J. Multiphase Flow 36, 324332.CrossRefGoogle Scholar
32. Kang, H. S. & Meneveau, C. 2008 Experimental study of an active grid-generated shearless mixing layer and comparisons with large-eddy simulation. Phys. Fluids 20, 125102.CrossRefGoogle Scholar
33. Kawanisi, K. & Shiozaki, R. 2008 Turbulent effects on the settling velocity of suspended sediment. J. Hydrol. Engng 134, 261266.CrossRefGoogle Scholar
34. Knaepen, B., Debliquy, O. & Carati, D. 2004 Direct numerical simulation and large-eddy simulation of a shear-free mixing layer. J. Fluid Mech. 514, 153172.CrossRefGoogle Scholar
35. Koochesfahani, M. M. & Dimotakis, P. E. 1986 Mixing and chemical reactions in a turbulent liquid mixing layer. J. Fluid Mech. 170, 83112.CrossRefGoogle Scholar
36. LaRue, J. C. & Libby, P. A. 1981 Thermal mixing layer downstream of half-heated turbulence grid. Phys. Fluids 24 (4), 597603.CrossRefGoogle Scholar
37. Lavezzo, V., Soldati, A., Gerashchenko, S., Warhaft, Z. & Collins, L. R. 2010 On the role of gravity and shear on the acceleration of inertial particles in near-wall turbulence. J. Fluid Mech. 658, 229246.CrossRefGoogle Scholar
38. Lilly, D. K. 1968 Models of cloud-topped mixed layers under a strong inversion. J. Fluid Mech. 94, 292309.Google Scholar
39. Ma, B. K. & Warhaft, Z. 1986 Some aspects of the thermal mixing layer in grid turbulence. Phys. Fluids 29 (10), 31143120.CrossRefGoogle Scholar
40. Mathew, J. & Basu, A. J. 2002 Some characteristics of entrainment at a cylindrical turbulence boundary. Phys. Fluids 14, 20652072.CrossRefGoogle Scholar
41. Maxey, M. R. 1987 The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech. 174, 441465.CrossRefGoogle Scholar
42. Maxey, M. R. & Corrsin, S. 1986 Gravitational settling of aerosol particles in randomly oriented cellular flow fields. J. Aerosol. Sci. 43, 11121134.Google Scholar
43. Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in a non-uniform flow. Phys. Fluids 26, 883889.CrossRefGoogle Scholar
44. Mei, R. 1994 Effect of turbulence on the particle settling velocity in the nonlinear drag range. Intl J. Multiphase Flow 20, 273284.CrossRefGoogle Scholar
45. Mellado, J. P. 2010 The evaporatively driven cloud-top mixing layer. J. Fluid Mech. 660, 536.CrossRefGoogle Scholar
46. Mungal, M. G. & Dimotakis, P. E. 1984 Mixing and combustion with low heat release in a turbulent shear layer. J. Fluid Mech. 148, 349382.CrossRefGoogle Scholar
47. Nielsen, P. 1993 Turbulence effects on the settling of suspended particles. J. Sedim. Petrol. 63, 835838.Google Scholar
48. Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
49. Poulain, C., Mazellier, N., Gervais, P., Gagne, Y. & Baudet, C. 2004 Spectral vorticity and Lagrangian velocity measurements in turbulent jets. Flow Turbul. Combust. 72, 245271.CrossRefGoogle Scholar
50. Pruppacher, H. R. & Klett, J. D. 1997 Microphysics of Clouds and Precipitation. Kluwer.Google Scholar
51. Reade, W. C. & Collins, L. R. 2000a Effect of preferential concentration on turbulent collision rates. Phys. Fluids 12, 25302540.CrossRefGoogle Scholar
52. Reade, W. C. & Collins, L. R. 2000b A numerical study of the particle size distribution of an aerosol undergoing turbulent coagulation. J. Fluid Mech. 415, 4564.CrossRefGoogle Scholar
53. Salazar, J. P. L. C. & Collins, L. R. 2012 Inertial particle relative velocity statistics in homogeneous isotropic turbulence. J. Fluid Mech. 696, 4566.CrossRefGoogle Scholar
54. Salazar, J. P. L. C., de Jong, J., Cao, L., Woodward, S., Meng, H. & Collins, L. R. 2008 Experimental and numerical investigation of inertial particle clustering in isotropic turbulence. J. Fluid Mech. 600, 245256.CrossRefGoogle Scholar
55. Saw, E. W., Shaw, R. A., Ayyalasomayajula, S., Chuang, P. Y. & Gylfason, A. 2008 Inertial clustering of particles in high-Reynolds-number turbulence. Phys. Rev. Lett. 100, 214501.CrossRefGoogle ScholarPubMed
56. Shaw, R. A. 2003 Particle–turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech. 35, 183227.CrossRefGoogle Scholar
57. Shy, S. S. & Breidenthal, R. E. 1990 Laboratory experiments on the cloud-top entrainment instability. J. Fluid Mech. 214, 115.CrossRefGoogle Scholar
58. Siebert, H., Shaw, R. A. & Warhaft, Z. 2010 Statistics of small scale velocity fluctuations in marine stratocumulus clouds. J. Atmos. Sci. 67, 262273.CrossRefGoogle Scholar
59. Speziale, C. G. 1991 Analytical methods for the development of Reynolds-stress closures in turbulence. Annu. Rev. Fluid Mech. 23, 107157.CrossRefGoogle Scholar
60. Squires, K. D. & Eaton, J. K. 1990 Particle response and turbulence modification in isotropic turbulence. Phys. Fluids A 2, 11911203.CrossRefGoogle Scholar
61. Squires, K. D. & Eaton, J. K. 1991a Measurements of particle dispersion from direct numerical simulations of isotropic turbulence. J. Fluid Mech. 226, 135.CrossRefGoogle Scholar
62. Squires, K. D. & Eaton, J. K. 1991b Preferential concentration of particles by turbulence. Phys. Fluids A 3, 11691178.CrossRefGoogle Scholar
63. Stratmann, F., Moehler, O., Shaw, R. & Wex, H. 2009 Clouds in the Perturbed Climate System. MIT.Google Scholar
64. Sundaram, S. & Collins, L. R. 1997 Collision statistics in an isotropic, particle-laden turbulent suspension. Part 1. Direct numerical simulations. J. Fluid Mech. 335, 75109.CrossRefGoogle Scholar
65. Sundaram, S. & Collins, L. R. 1999 A numerical study of the modulation of isotropic turbulence by suspended particles. J. Fluid Mech. 379, 105143.CrossRefGoogle Scholar
66. Tavoularis, S., Bennett, J. C. & Corrsin, S. 1978 Velocity-derivative skewness in small Reynolds number, nearly isotropic turbulence. J. Fluid Mech. 88, 6369.CrossRefGoogle Scholar
67. Tordella, D. & Iovieno, M. 2006 Numerical experiments on the intermediate asymptotics of shear-free turbulent transport and diffusion. J. Fluid Mech. 549, 429441.CrossRefGoogle Scholar
68. Tordella, D. & Iovieno, M. 2011 Small-scale anisotropy in turbulent shearless mixing. Phys. Rev. Lett. 107, 194501.CrossRefGoogle ScholarPubMed
69. Veeravalli, S. & Warhaft, Z. 1989 The shearless turbulence mixing layer. J. Fluid Mech. 207, 191229.CrossRefGoogle Scholar
70. Veeravalli, S. & Warhaft, Z. 1990 Thermal dispersion from a line source in the shearless turbulence mixing layer. J. Fluid Mech. 216, 3570.CrossRefGoogle Scholar
71. Wang, L. P. & Maxey, M. R. 1993 Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 256, 2768.CrossRefGoogle Scholar
72. Wang, L.-P., Wexler, A. S. & Zhou, Y. 2000 Statistical mechanical description and modelling of turbulent collision of inertial particles. J. Fluid Mech. 415, 117153.CrossRefGoogle Scholar
73. Westerweel, J., Fukushima, C., Pedersen, J. M. & Hunt, J. C. R. 2005 Mechanics of the turbulent–nonturbulent interface of a jet. Phys. Rev. Lett. 95, 174501.CrossRefGoogle ScholarPubMed
74. Westerweel, J., Hofmann, T., Fukushima, C. & Hunt, J. C. R. 2002 The turbulent/non-turbulent interface at the outer boundary of a self-similar turbulent jet. Exp. Fluids 33, 873878.CrossRefGoogle Scholar
75. Wood, A. M., Hwang, W. & Eaton, J. K. 2005 Preferential concentration of particles in homogeneous and isotropic turbulence. Intl J. Multiphase Flow 31, 12201230.CrossRefGoogle Scholar
76. Yang, C. Y. & Lei, U. 1998 The role of turbulent scales in the settling velocity of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 20, 179205.CrossRefGoogle Scholar
77. Yang, T. S. & Shy, S. S. 2003 The settling velocity of heavy particles in an aqueous near-isotropic turbulence. Phys. Fluids 15, 868880.CrossRefGoogle Scholar
78. Yang, T. S. & Shy, S. S. 2005 Two-way interaction between solid particles and homogeneous air turbulence: particle settling rate and turbulence modification measurements. J. Fluid Mech. 526, 171216.CrossRefGoogle Scholar
79. Zhou, Y., Wexler, A. S. & Wang, L.-P. 2001 Modelling turbulent collision of bidisperse inertial particles. J. Fluid Mech. 433, 77104.CrossRefGoogle Scholar