Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T07:19:28.410Z Has data issue: false hasContentIssue false

Direct numerical simulation of instabilities in a two-dimensional near-critical fluid layer heated from below

Published online by Cambridge University Press:  24 August 2001

S. AMIROUDINE
Affiliation:
Laboratoire de Modélisation et Simulation Numérique en Mécanique, IMT-Château-Gombert, CNRS, Université d'Aix-Marseille II, 38, rue Frédéric Joliot-Curie, 13451 Marseille Cedex 20, France Département de Physique, Université des Antilles-Guyane, Faculté des Sciences, 917159 Pointe-a-Pitre Cedex, Guadeloupe, France
P. BONTOUX
Affiliation:
Laboratoire de Modélisation et Simulation Numérique en Mécanique, IMT-Château-Gombert, CNRS, Université d'Aix-Marseille II, 38, rue Frédéric Joliot-Curie, 13451 Marseille Cedex 20, France
P. LARROUDÉ
Affiliation:
Laboratoire de Modélisation et Simulation Numérique en Mécanique, IMT-Château-Gombert, CNRS, Université d'Aix-Marseille II, 38, rue Frédéric Joliot-Curie, 13451 Marseille Cedex 20, France LEGI, CNRS, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex, France
B. GILLY
Affiliation:
Laboratoire de Modélisation et Simulation Numérique en Mécanique, IMT-Château-Gombert, CNRS, Université d'Aix-Marseille II, 38, rue Frédéric Joliot-Curie, 13451 Marseille Cedex 20, France
B. ZAPPOLI
Affiliation:
CNES/DP/MP/SC, 18 Av. Edouard Belin, 31401 Toulouse Cedex 04, France

Abstract

An analysis of the hydrodynamic stability of a fluid near its near critical point – initially at rest and in thermodynamic equilibrium – is considered in the Rayleigh–Bénard configuration, i.e. heated from below. The geometry is a two-dimensional square cavity and the top and bottom walls are maintained at constant temperatures while the sidewalls are insulated. Owing to the homogeneous thermo-acoustic heating (piston effect), the thermal field exhibits a very specific structure in the vertical direction. A very thin hot thermal boundary layer is formed at the bottom, then a homogeneously heated bulk settles in the core at a lower temperature; at the top, a cooler boundary layer forms in order to continuously match the bulk temperature with the colder temperature of the upper wall. We analyse the stability of the two boundary layers by numerically solving the Navier–Stokes equations appropriate for a van der Waals' gas slightly above its critical point. A finite-volume method is used together with an acoustic filtering procedure. The onset of the instabilities in the two different layers is discussed with respect to the results of the theoretical stability analyses available in the literature and stability diagrams are derived. By accounting for the piston effect the present results can be put within the framework of the stability analysis of Gitterman and Steinberg for a single layer subjected to a uniform, steady temperature gradient.

Type
Research Article
Copyright
© 2001 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)