Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-13T01:35:02.217Z Has data issue: false hasContentIssue false

Direct numerical simulation of transition in a sharp cone boundary layer at Mach 6: fundamental breakdown

Published online by Cambridge University Press:  10 March 2015

Jayahar Sivasubramanian*
Affiliation:
Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA
Hermann F. Fasel
Affiliation:
Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA
*
Email address for correspondence: jayahar@email.arizona.edu

Abstract

Direct numerical simulations (DNS) were performed to investigate the laminar–turbulent transition in a boundary layer on a sharp cone with an isothermal wall at Mach 6 and at zero angle of attack. The motivation for this research is to make a contribution towards understanding the nonlinear stages of transition and the final breakdown to turbulence in hypersonic boundary layers. In particular, the role of second-mode fundamental resonance, or (K-type) breakdown, is investigated using high-resolution ‘controlled’ transition simulations. The simulations were carried out for the laboratory conditions of the hypersonic transition experiments conducted at Purdue University. First, several low-resolution simulations were carried out to explore the parameter space for fundamental resonance in order to identify the cases that result in strong nonlinear interactions. Subsequently, based on the results from this study, a set of highly resolved simulations that proceed deep into the turbulent breakdown region have been performed. The nonlinear interactions observed during the breakdown process are discussed in detail in this paper. A detailed description of the flow structures that arise due to these nonlinear interactions is provided and an analysis of the skin friction and heat transfer development during the breakdown is presented. The controlled transition simulations clearly demonstrate that fundamental breakdown may indeed be a viable path to complete breakdown to turbulence in hypersonic cone boundary layers at Mach 6.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alba, C. R., Casper, K. M., Beresh, S. J. & Schneider, S. P.2010 Comparison of experimentally measured and computed second-mode disturbances in hypersonic boundary-layers. AIAA Paper 2010-0897.Google Scholar
Balakumar, P. & Malik, M. R. 1992 Discrete modes and continuous spectra in supersonic boundary layers. J. Fluid Mech. 239, 631656.Google Scholar
Balsara, D. S. & Shu, C.-W. 2000 Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high-order of accuracy. J. Comput. Phys. 160, 405452.CrossRefGoogle Scholar
Beckwith, I. E., Creel, T. R., Chen, F.-J. & Kendall, J. M.1983 Free stream noise and transition measurements in a Mach 3.5 pilot quiet tunnel. AIAA Paper 1983-0042.Google Scholar
Berridge, D., Chou, A., Ward, C., Steen, L., Gilbert, P., Juliano, T., Schneider, S. & Gronvall, J.2010 Hypersonic boundary-layer transition experiments in a Mach 6 quiet tunnel. AIAA Paper 2010-1061.CrossRefGoogle Scholar
Berry, S. A., Hamilton, H. H. & Wurster, K. E. 2006 Effect of computational method on discrete roughness correlations for shuttle orbiter. J. Spacecr. Rockets 43 (4), 842852.CrossRefGoogle Scholar
Berry, S. A. & Horvarth, T. J. 2008 Discrete roughness transition for hypersonic flight vehicles. J. Spacecr. Rockets 45 (2), 216227.CrossRefGoogle Scholar
Bountin, D., Shiplyuk, A. & Maslov, A. 2008 Evolution of nonlinear processes in a hypersonic boundary layer on a sharp cone. J. Fluid Mech. 611, 427442.CrossRefGoogle Scholar
Bountin, D. A., Shiplyuk, A. N. & Sidorenko, A. A. 1999 Experimental investigations of disturbance development in the hypersonic boundary layer on a conical model. In Laminar-Turbulent Transition (ed. Fasel, H. F. & Saric, W. S.), pp. 475480. Springer.Google Scholar
Canuto, C., Hussaini, M., Quateroni, A. & Zang, T. 1988 Spectral Methods in Fluid Dynamics. Springer.Google Scholar
Casper, K. M., Beresh, S. J., Henfling, J. F., Spillers, R. W., Pruett, B. & Schneider, S. P.2009 Hypersonic wind-tunnel measurements of boundary-layer pressure fluctuations. AIAA Paper 2009-4054.CrossRefGoogle Scholar
Chen, F.-J., Malik, M. R. & Beckwith, I. E.1988 Comparison of boundary-layer transition on a cone and flat plate at Mach 3.5. AIAA Paper 1988-0411.CrossRefGoogle Scholar
Chen, F. J., Malik, M. R. & Beckwith, I. E. 1989 Boundary-layer transition on a cone and flat plate at Mach 3.5. AIAA J. 27, 687693.Google Scholar
Chokani, N. 1999 Nonlinear spectral dynamics of hypersonic laminar boundary layer flow. Phys. Fluids 11 (12), 38463851.Google Scholar
Chokani, N. 2005 Nonlinear evolution of Mack modes in a hypersonic boundary layer. Phys. Fluids 17, 014102.Google Scholar
Demetriades, A. 1960 An experiment on the stability of hypersonic laminar boundary layers. J. Fluid Mech. 7, 385396.CrossRefGoogle Scholar
Demetriades, A.1974 Hypersonic viscous flow over a slender cone, part: III: laminar instability and transition. AIAA Paper 1974-0535.Google Scholar
Demetriades, A. 1977 Boundary layer instability observations at Mach number 7. Trans. ASME: J. Appl. Mech. 99, 710.CrossRefGoogle Scholar
Demetriades, A. 1978 New experiments on hypersonic boundary layer stability including wall temperature effects. In Proceedings of the 1978 Heat Transfer and Fluid Mechanics Institute, pp. 3954. Stanford University Press.Google Scholar
van Driest, E. 1952 Turbulent boundary layer on a cone in a supersonic flow at zero angle of attack. J. Aero. Sci. 19, 5557.CrossRefGoogle Scholar
Eissler, W.1995 Numerische Untersuchungen zum laminar-turbulenten Strömungsumschlag in Überschallgrenzschichten. PhD thesis, Universität Stuttgart.Google Scholar
Eissler, W. & Bestek, H. 1996 Spatial numerical simulations of linear and weakly nonlinear wave instabilities in supersonic boundary layers. Theor. Comput. Fluid Dyn. 8, 219235.CrossRefGoogle Scholar
Fasel, H. F. 1990 Numerical simulation of instability and transition in boundary layer flows. In Laminar-Turbulent Transition (ed. Arnal, D. & Michel, R.), pp. 587597. Springer.Google Scholar
Fasel, H. F. & Konzelmann, U. 1990 Non-parallel stability of a flat-plate boundary layer using the complete Navier–Stokes equations. J. Fluid Mech. 221, 311347.CrossRefGoogle Scholar
Fasel, H., Thumm, A. & Bestek, H. 1993 Direct numerical simulation of transition in supersonic boundary layer: oblique breakdown. In Transitional and Turbulent Compressible Flows (ed. Kral, L. D. & Zang, T. A.), FED, vol. 151, pp. 7792. ASME.Google Scholar
Fedorov, A. V. 2011 Transition and stability of high-speed boundary layers. Annu. Rev. Fluid Mech. 43, 7995.Google Scholar
Ferziger, J. H. 1998 Numerical Methods for Engineering Application, 2nd edn. Wiley-Interscience.Google Scholar
Fezer, A. & Kloker, M.2001 Grenzschichtumschlag bei Überschallströmung. Sonderforschungsbericht 259. DFG.Google Scholar
Fisher, D. F. & Dougherty, N. S.1982 In-flight transition measurement on a 10° cone at Mach numbers from 0.5 to 2.0. TP 1971. NASA.Google Scholar
Gasperas, G.1987 The stability of the compressible boundary layer on a sharp cone at zero angle of attack. AIAA Paper 1987-0494.Google Scholar
Gaster, M. 1974 On the effects of boundary-layer growth on flow stability. J. Fluid Mech. 66, 465480.CrossRefGoogle Scholar
Gross, A. & Fasel, H. F. 2008 High-order accurate numerical method for complex flows. AIAA J. 46, 204214.Google Scholar
Gross, A. & Fasel, H. F. 2010 Numerical investigation of supersonic flow for axisymmetric cones. Maths Comput. Simul. 81, 133142.Google Scholar
Haney, J. W. 1983 Orbiter entry heating lessons learned from development flight test program. In Shuttle Performance: Lessons Learned, Part 2 (ed. Arrington, J. P. & Jones, J. J.), pp. 719–751, NASA-CP-2283.Google Scholar
Harris, P. J.1997 Numerical investigation of transitional compressible plane wakes. PhD thesis, The University of Arizona.Google Scholar
Heisenberg, W. 1948 Zur statistischen Theorie der Turbulenz. Z. Phys. 124, 628657.Google Scholar
Herbert, T. 1988 Secondary instability of boundary layers. Annu. Rev. Fluid Mech. 20, 487526.Google Scholar
Horvath, T. J., Berry, S. A., Hollis, B. R., Chang, C.-L. & Singer, B. A.2002 Boundary layer transition on slender cones in conventional and low disturbance Mach 6 wind tunnels. AIAA Paper 2002-2743.Google Scholar
Hunt, J. C. R., Wray, A. A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent flows. In Proceedings of the 1988 Summer Research Program, Center for Turbulence Research, Stanford University, pp. 193208.Google Scholar
Husmeier, F. & Fasel, H. F.2007 Numerical investigations of hypersonic boundary layer transition for circular cones. AIAA Paper 2007-3843.CrossRefGoogle Scholar
Kachanov, Yu. S. 1994 Physical mechanisms of laminar boundary-layer transition. Annu. Rev. Fluid Mech. 26, 411482.Google Scholar
Kendall, J. M. 1975 Wind tunnel experiments relating to supersonic and hypersonic boundary-layer transition. AIAA J. 13, 290299.Google Scholar
Lachowicz, J. T., Chokani, N. & Wilkinson, S. P. 1996 Boundary-layer stability measurements in a hypersonic quiet tunnel. AIAA J. 34 (12), 24962500.Google Scholar
Laible, A. C.2011 Numerical investigation of boundary-layer transition for cones at Mach 3.5 and 6.0. PhD thesis, University of Arizona.Google Scholar
Laible, A. C., Mayer, C. S. J. & Fasel, H. F.2008 Numerical investigation of supersonic transition for a circular cone at Mach 3.5. AIAA Paper 2008-4397.Google Scholar
Laible, A. C., Mayer, C. S. J. & Fasel, H. F.2009 Numerical investigation of transition for a cone at Mach 3.5: oblique breakdown. AIAA Paper 2009-3557.CrossRefGoogle Scholar
van Leer, B. 1982 Flux-vector splitting for the Euler equations. In International Conference on Numerical Methods in Fluid Dynamics, vol. 170, pp. 507512. Springer.Google Scholar
Mack, L. M. 1965 Computation of the stability of the laminar compressible boundary layer. In Methods of Comp. Physics (ed. Alder, B., Fernbach, S. & Rotenberg, M.), vol. 4, pp. 247299. Academic.Google Scholar
Mack, L. M.1969 Boundary-layer stability theory. Internal Document 900-277. Jet Propulsion Laboratory, Pasadena, California.Google Scholar
Mack, L. M. 1975 Linear stability theory and the problem of supersonic boundary-layer transition. AIAA J. 13, 278289.Google Scholar
Mack, L. M.1984 Boundary-layer linear stability theory. AGARD Report 709. Advisory Group for Aerospace Research and Development.Google Scholar
Mack, L. M.1987 Stability of axisymmetric boundary layers on sharp cones at hypersonic Mach numbers. AIAA Paper 1987-1413.Google Scholar
Malik, M. R. 1984 Instability and transition in supersonic boundary layers. In Laminar Turbulent Boundary Layers; Proceedings of the Energy Sources Technology Conferences (ed. Uram, E. M. & Weber, H. E.), pp. 139147. ASME.Google Scholar
Mangler, W. 1948 Zusammenhang zwischen ebenen und rotationssymmetrischen Grenzschichten in kompressiblen Flüssigkeiten. Z. Angew. Math. Mech. 28 (4), 97103.Google Scholar
Maslov, A. A., Shiplyuk, A. N., Bountin, D. A. & Sidorenko, A. A. 2006 Mach 6 boundary-layer stability experiments on sharp and blunted cones. J. Spacecr. Rockets 43 (1), 7176.Google Scholar
Maslov, A. A., Shiplyuk, A. N., Sidorenko, A. A. & Arnal, D. 2001 Leading-edge receptivity of a hypersonic boundary layer on a flat plate. J. Fluid Mech. 426, 7394.Google Scholar
Meitz, H. & Fasel, H. F. 2000 A compact-difference scheme for the Navier–Stokes equations in vorticity-velocity formulation. J. Comput. Phys. 157, 371403.CrossRefGoogle Scholar
Poinsot, T. J. & Lele, S. K. 1992 Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104129.Google Scholar
Pruett, C. D. & Chang, C.-L. 1995 Spatial direct numerical simulation of high-speed boundary-layer flows. Part II: transition on a cone in Mach 8 flow. Theor. Comput. Fluid Dyn. 7, 397424.Google Scholar
Pruett, C. D. & Chang, C.-L. 1998 Direct numerical simulation of hypersonic boundary-layer flow on a flared cone. Theor. Comput. Fluid Dyn. 11, 4967.Google Scholar
Pruett, C. D., Zang, T. A., Chang, C.-L. & Carpenter, M. H. 1995 Spatial direct numerical simulation of high-speed boundary-layer flows. Part I: algorithmic considerations and validation. Theor. Comput. Fluid Dyn. 7, 4976.CrossRefGoogle Scholar
Roy, C. J. & Blottner, F. G. 2006 Review and assessment of turbulence models for hypersonic flows. Prog. Aerosp. Sci. 42, 469530.Google Scholar
Saric, W. S. & Nayfeh, A. H. 1975 Nonparallel stability of boundary layer flows. Phys. Fluids 18, 945950.Google Scholar
Schneider, S. P. 2001 Effects of high-speed tunnel noise on laminar-turbulent transition. J. Spacecr. Rockets 38 (3), 323333.Google Scholar
Schneider, S. P. 2004 Hypersonic laminar-turbulent transition on circular cones and scramjet forebodies. Prog. Aerosp. Sci. 40, 150.CrossRefGoogle Scholar
Shiplyuk, A. N., Bountin, D. A., Maslov, A. A. & Chokani, N. 2003 Nonlinear mechanisms of the initial stage of laminar-turbulent transition at hypersonic velocities. J. Appl. Mech. Tech. Phys. 44 (5), 654659.CrossRefGoogle Scholar
Sivasubramanian, J. & Fasel, H. F.2010 Numerical investigation of boundary-layer transition initiated by a wavepacket for a cone at Mach 6. AIAA Paper 2010-0900.Google Scholar
Sivasubramanian, J. & Fasel, H. F.2011 Numerical investigation of laminar-turbulent transition in a cone boundary layer at Mach 6. AIAA Paper 2011-3562.Google Scholar
Sivasubramanian, J. & Fasel, H. F.2012a Growth and breakdown of a wavepacket into a turbulent spot in a cone boundary layer at Mach 6. AIAA Paper 2012-0085.Google Scholar
Sivasubramanian, J. & Fasel, H. F.2012b Nonlinear stages of transition and breakdown in a boundary layer on a sharp cone at Mach 6. AIAA Paper 2012-0087.Google Scholar
Sivasubramanian, J. & Fasel, H. F. 2014 Numerical investigation of the development of three-dimensional wavepackets in a sharp cone boundary layer at Mach 6. J. Fluid Mech. 756, 600649.Google Scholar
Sivasubramanian, J., Mayer, C. S. J., Laible, A. C. & Fasel, H. F.2009 Numerical investigation of wavepackets in a hypersonic cone boundary layer at Mach 6. AIAA Paper 2009-3560.Google Scholar
Stetson, K. F. & Kimmel, R. L.1992 On hypersonic boundary-layer stability. AIAA Paper 1992-0737.Google Scholar
Stetson, K. F. & Kimmel, R. L.1993 On the breakdown of a hypersonic laminar boundary layer. AIAA Paper 1993-0896.Google Scholar
Stetson, K. F., Thompson, E. R., Donaldson, J. C. & Siler, L. G.1983 Laminar boundary layer stability experiments on a cone at Mach 8. Part I: sharp cone. AIAA Paper 1983-1761.Google Scholar
Stetson, K. F., Thompson, E. R., Donaldson, J. C. & Siler, L. G.1984 Laminar boundary layer stability experiments on a cone at Mach 8. Part II: blunt cone. AIAA Paper 1984-0006.Google Scholar
Stetson, K. F., Thompson, E. R., Donaldson, J. C. & Siler, L. G.1985 Laminar boundary layer stability experiments on a cone at Mach 8. Part III: sharp cone at angle of attack. AIAA Paper 1985-0492.Google Scholar
Stetson, K. F., Thompson, E. R., Donaldson, J. C. & Siler, L. G.1986 Laminar boundary layer stability experiments on a cone at Mach 8. Part IV: on unit Reynolds number and environmental effects. AIAA Paper 1986-1087.Google Scholar
Stetson, K. F., Thompson, E. R., Donaldson, J. C. & Siler, L. G.1989 Laminar boundary layer stability experiments on a cone at Mach 8. Part V: tests with a cooled model. AIAA Paper 1989-1895.Google Scholar
Thumm, A.1991 Numerische Untersuchungen zum laminar-turbulenten Strömungsumschlag in transsonischen Grenzschichtströmungen. PhD thesis, Universität Stuttgart.Google Scholar
Tumin, A. 2007 Three-dimensional spatial normal modes in compressible boundary layers. J. Fluid Mech. 586, 295322.Google Scholar
Ward, C., Wheaton, B., Chou, A., Berridge, D., Letterman, L., Luersen, R. & Schneider, S.2012 Hypersonic boundary-layer transition experiments in the Boeing/AFOSR Mach 6 quiet tunnel. AIAA Paper 2012-0282.Google Scholar
Weizäcker, C. F. v. 1948 Das Spektrum der Turbulenz bei großen Reynoldsschen Zahlen. Z. Phys. A Hadrons Nuclei 124, 614627.Google Scholar
White, F. M. 2006 Viscous Fluid Flow. McGraw-Hill.Google Scholar
Zhong, X. 1998 High-order finite-difference schemes for numerical simulation of hypersonic boundary-layer transition. J. Comput. Phys. 144, 662709.CrossRefGoogle Scholar
Zhong, X. 2001 Leading-edge receptivity to free-stream disturbance waves for hypersonic flow over a parabola. J. Fluid Mech. 441, 315367.Google Scholar
Zhong, X. & Tatineni, M. 2003 High-order non-uniform grid schemes for numerical simulation of hypersonic boundary-layer stability and transition. J. Comput. Phys. 190, 419458.Google Scholar