Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-01T10:10:42.723Z Has data issue: false hasContentIssue false

Direct numerical simulation of turbulent flow through a ribbed square duct

Published online by Cambridge University Press:  06 August 2020

S. V. Mahmoodi-Jezeh
Affiliation:
Department of Mechanical Engineering, University of Manitoba, Winnipeg, MBR3T 5V6, Canada
Bing-Chen Wang*
Affiliation:
Department of Mechanical Engineering, University of Manitoba, Winnipeg, MBR3T 5V6, Canada
*
Email address for correspondence: bingchen.wang@umanitoba.ca

Abstract

In this research turbulent flow in a ribbed square duct of different blockage ratios ($Br=0.05$, 0.1 and 0.2) at a fixed Reynolds number of $Re_b=5600$ is studied using direct numerical simulation. The results are compared with those of a smooth duct flow. In contrast to the classical two-dimensional rib-roughened boundary-layer flow over a flat plate, the turbulence field is influenced by not only the rib elements but also the four duct sidewalls. The results detail out the three-dimensional effects of the sidewalls and ribs on flow statistics and structures. This study also aims at investigating the effect of blockage ratio on local non-equilibrium of turbulence, large- and small-scale flow anisotropy, and transport of turbulence kinetic energy. It is observed that as the rib height increases, the pressure near the windward face of the rib increases significantly, associated with an accelerated streamwise flow in the duct. Furthermore, an augmentation of the blockage ratio concurrently generates stronger turbulent secondary flow motions, resulting in larger magnitudes of Reynolds stresses near the rib crest. The secondary flow motions drastically alter the turbulent transport processes between the sidewall and duct centre, giving rise to high degrees of non-equilibrium states. The dynamics of coherent structures are studied by examining characteristics of the instantaneous velocity field, swirling strength, temporal auto-correlations, spatial two-point auto-correlations and velocity spectra. The results show that an increase of rib height significantly promotes the ejection and sweep events, which subsequently amplify the strength of vortical motions near the rib crest.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adrian, R. J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19, 041301.CrossRefGoogle Scholar
Adrian, R. J., Meinhart, C. D. & Tomkins, C. D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.CrossRefGoogle Scholar
Andreopoulos, J. & Bradshaw, P. 1981 Measurements of turbulence structure in the boundary layer on a rough surface. Boundary-Layer Meteorol. 20, 201213.CrossRefGoogle Scholar
Bandyopadhyay, P. R. 1987 Rough-wall turbulent boundary layers in the transition regime. J. Fluid Mech. 180, 231266.CrossRefGoogle Scholar
Bhaganagar, K. 2008 Direct numerical simulation of unsteady flow in channel with rough walls. Phys. Fluids 20, 101508.CrossRefGoogle Scholar
Bhaganagar, K. & Chau, L. 2015 Characterizing turbulent flow over 3-D idealized and irregular rough surfaces at low Reynolds number. Appl. Math. Model. 39, 67516766.CrossRefGoogle Scholar
Bhaganagar, K., Kim, J. & Coleman, G. 2004 Effect of roughness on wall-bounded turbulence. Flow Turbul. Combust. 72, 463492.CrossRefGoogle Scholar
Borello, D., Salvagni, A. & Hanjalić, K. 2015 Effects of rotation on flow in an asymmetric rib-roughened duct: LES study. Intl J. Heat Fluid Flow 55, 104119.CrossRefGoogle Scholar
Burattini, P., Leonardi, S., Orlandi, P. & Antonia, R. A. 2008 Comparison between experiments and direct numerical simulations in a channel flow with roughness on one wall. J. Fluid Mech. 600, 403426.CrossRefGoogle Scholar
Casarsa, L. & Arts, T. 2005 Experimental investigation of the aerothermal performance of a high blockage rib-roughened cooling channel. Trans. ASME: J. Turbomach 127, 580588.Google Scholar
Chan, L., MacDonald, M., Chung, D., Hutchins, N. & Ooi, A. 2015 A systematic investigation of roughness height and wavelength in turbulent pipe flow in the transitionally rough regime. J. Fluid Mech. 771, 743777.CrossRefGoogle Scholar
Chernyshenko, S. I. & Baig, M. F. 2005 The mechanism of streak formation in near-wall turbulence. J. Fluid Mech. 544, 99131.CrossRefGoogle Scholar
Choi, H., Moin, P. & Kim, J. 1993 Direct numerical simulation of turbulent flow over riblets. J. Fluid Mech. 255, 503539.CrossRefGoogle Scholar
Christensen, K. T. & Adrian, R. J. 2001 Statistical evidence of hairpin vortex packets in wall turbulence. J. Fluid Mech. 431, 433443.CrossRefGoogle Scholar
Coceal, O., Dobre, A., Thomas, T. G. & Belcher, S. E. 2007 Structure of turbulent flow over regular arrays of cubical roughness. J. Fluid Mech. 589, 375409.CrossRefGoogle Scholar
Coletti, F., Cresci, I. & Arts, T. 2013 Spatio-temporal analysis of the turbulent flow in a ribbed channel. Intl J. Heat Fluid Flow 44, 181196.CrossRefGoogle Scholar
Coletti, F., Lo Jacono, D., Cresci, I. & Arts, T. 2014 Turbulent flow in rib-roughened channel under the effect of Coriolis and rotational buoyancy forces. Phys. Fluids 26, 045111.CrossRefGoogle Scholar
Coletti, F., Maurer, T., Arts, T. & Di Sante, A. 2012 Flow field investigation in rotating rib-roughened channel by means of particle image velocimetry. Exp. Fluids 52, 10431061.CrossRefGoogle Scholar
Fang, X., Yang, Z., Wang, B. C., Tachie, M. F. & Bergstrom, D. J. 2015 Highly-disturbed turbulent flow in a square channel with V-shaped ribs on one wall. Intl J. Heat Fluid Flow 56, 182197.CrossRefGoogle Scholar
Fang, X., Yang, Z., Wang, B.-C., Tachie, M. F. & Bergstrom, D. J. 2017 Large-eddy simulation of turbulent flow and structures in a square duct roughened with perpendicular and V-shaped ribs. Phys. Fluids 29, 065110.CrossRefGoogle Scholar
Gavrilakis, S. 1992 Numerical simulation of low-Reynolds-number turbulent flow through a straight square duct. J. Fluid Mech. 244, 101129.CrossRefGoogle Scholar
Griffith, B. E. & Patankar, N. A. 2020 Immersed methods for fluid–structure interaction. Annu. Rev. Fluid Mech. 52, 421.CrossRefGoogle Scholar
Han, J. C., Dutta, S. & Ekkad, S. 2012 Gas Turbine Heat Transfer and Cooling Technology. CRC.CrossRefGoogle Scholar
Hirota, M., Yokosawa, H. & Fujita, H. 1992 Turbulence kinetic energy in turbulent flows through square ducts with rib-roughened walls. Intl J. Heat Fluid Flow 13, 2229.CrossRefGoogle Scholar
Hurther, D., Lemmin, U. & Terray, E. A. 2007 Turbulent transport in the outer region of rough-wall open-channel flows: the contribution of large coherent shear stress structures (LC3S). J. Fluid Mech. 574, 465493.CrossRefGoogle Scholar
Ikeda, T. & Durbin, P. A. 2007 Direct simulations of a rough-wall channel flow. J. Fluid Mech. 571, 235263.CrossRefGoogle Scholar
Ismail, U., Zaki, T. A. & Durbin, P. A. 2018 Simulations of rib-roughened rough-to-smooth turbulent channel flows. J. Fluid Mech. 843, 419449.CrossRefGoogle Scholar
Jackson, P. S. 1981 On the displacement height in the logarithmic velocity profile. J. Fluid Mech. 111, 1525.CrossRefGoogle Scholar
Keirsbulck, L., Labraga, L., Mazouz, A. & Tournier, C. 2002 Surface roughness effects on turbulent boundary layer structures. Trans. ASME: J. Fluids Engng 124, 127135.Google Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.CrossRefGoogle Scholar
Krogstad, P.-Å., Andersson, H. I., Bakken, O. M. & Ashrafian, A. 2005 An experimental and numerical study of channel flow with rough walls. J. Fluid Mech. 530, 327352.CrossRefGoogle Scholar
Krogstad, P.-Å. & Antonia, R. A. 1994 Structure of turbulent boundary layers on smooth and rough walls. J. Fluid Mech. 277, 121.CrossRefGoogle Scholar
Krogstad, P.-Å. & Antonia, R. A. 1999 Surface roughness effects in turbulent boundary layers. Exp. Fluids 27, 450460.CrossRefGoogle Scholar
Labbé, O. 2013 Large-eddy-simulation of flow and heat transfer in a ribbed duct. Comput. Fluids 76, 2332.CrossRefGoogle Scholar
Lamballais, E., Lesieur, M. & Métais, O. 1997 Probability distribution functions and coherent structures in a turbulent channel. Phys. Rev. E 56, 67616766.CrossRefGoogle Scholar
Lee, J. H., Sung, H. J. & Krogstad, P.-Å. 2011 Direct numerical simulation of the turbulent boundary layer over a cube-roughened wall. J. Fluid Mech. 669, 397431.CrossRefGoogle Scholar
Leonardi, S. & Castro, I. P. 2010 Channel flow over large cube roughness: a direct numerical simulation study. J. Fluid Mech. 651, 519539.CrossRefGoogle Scholar
Leonardi, S., Orlandi, P., Djenidi, L. & Antonia, R. A. 2004 Structure of turbulent channel flow with square bars on one wall. Intl J. Heat Fluid Flow 25, 384392.CrossRefGoogle Scholar
Leonardi, S., Orlandi, P., Smalley, R. J., Djenidi, L. & Antonia, R. A. 2003 Direct numerical simulations of turbulent channel flow with transverse square bars on one wall. J. Fluid Mech. 491, 229238.CrossRefGoogle Scholar
Liou, T. M., Wu, Y. Y. & Chang, Y. 1993 LDV measurements of periodic fully developed main and secondary flows in a channel with rib-disturbed walls. Trans. ASME: J. Fluids Engng 115, 109114.Google Scholar
Liu, Y. Z., Ke, F. & Sung, H. J. 2008 Unsteady separated and reattaching turbulent flow over a two-dimensional square rib. J. Fluids Struct. 24, 366381.CrossRefGoogle Scholar
Lohász, M. M., Rambaud, P. & Benocci, C. 2006 Flow features in a fully developed ribbed duct flow as a result of miles. Flow Turbul. Combust. 77, 5976.CrossRefGoogle Scholar
MacDonald, M., Chan, L., Chung, D., Hutchins, N. & Ooi, A. 2016 Turbulent flow over transitionally rough surfaces with varying roughness densities. J. Fluid Mech. 763, 130161.CrossRefGoogle Scholar
Mazouz, A., Labraga, L. & Tournier, C. 1998 Anisotropy invariants of Reynolds stress tensor in a duct flow and turbulent boundary layer. Trans. ASME: J. Fluids Engng 120, 280284.Google Scholar
Mittal, R. & Iaccarino, G. 2005 Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239261.CrossRefGoogle Scholar
Mompean, G., Gavrilakis, S., Machiels, L. & Deville, M. O. 1996 On predicting the turbulence-induced secondary flows using nonlinear ${k}$-$\varepsilon$ models. Phys. Fluids 8, 18561868.CrossRefGoogle Scholar
Moser, R. D. & Moin, P. 1987 The effects of curvature in wall-bounded turbulent flows. J. Fluid Mech. 175, 479510.CrossRefGoogle Scholar
Nagano, Y., Hattori, H. & Houra, T. 2004 DNS of velocity and thermal fields in turbulent channel flow with transverse-rib roughness. Intl J. Heat Fluid Flow 25, 393403.CrossRefGoogle Scholar
Noormohammadi, A. & Wang, B.-C. 2019 DNS study of passive plume interference emitting from two parallel line sources in a turbulent channel flow. Intl J. Heat Fluid Flow 77, 202216.CrossRefGoogle Scholar
Orlandi, P., Lenoardi, S. & Antonia, R. A. 2006 Turbulent channel flow with either transverse or longitudinal roughness elements on one wall. J. Fluid Mech. 561, 279305.CrossRefGoogle Scholar
Perry, A. E., Schofield, W. H. & Joubert, P. N. 1969 Rough wall turbulent boundary layers. J. Fluid Mech. 37, 383413.CrossRefGoogle Scholar
Peskin, C. S. 1972 Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10, 252271.CrossRefGoogle Scholar
Philips, D. A., Rossi, R. & Iaccarino, G. 2013 Large-eddy simulation of passive scalar dispersion in an urban-like canopy. J. Fluid Mech. 723, 404428.CrossRefGoogle Scholar
Pinelli, A., Naqavi, I. Z., Piomelli, U. & Favier, J. 2010 a Immersed-boundary methods for general finite-difference and finite-volume Navier–Stokes solvers. J. Comput. Phys. 229, 90739091.CrossRefGoogle Scholar
Pinelli, A., Uhlmann, M., Sekimoto, A. & Kawahara, G. 2010 b Reynolds number dependence of mean flow structure in square duct turbulence. J. Fluid Mech. 644, 107122.CrossRefGoogle Scholar
Pirozzoli, S., Modesti, D., Orlandi, P. & Grasso, F. 2018 Turbulence and secondary motions in square duct flow. J. Fluid Mech. 840, 631655.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Rouhi, A., Chung, D. & Hutchins, N. 2019 Direct numerical simulation of open-channel flow over smooth-to-rough and rough-to-smooth step changes. J. Fluid Mech. 866, 450486.CrossRefGoogle Scholar
Scotti, A. 2006 Direct numerical simulation of turbulent channel flows with boundary roughened with virtual sandpaper. Phys. Fluids 18, 031701.CrossRefGoogle Scholar
Sewall, E. A., Tafti, D. K., Graham, A. B. & Thole, K. A. 2006 Experimental validation of large eddy simulations of flow and heat transfer in a stationary ribbed duct. Intl J. Heat Fluid Flow 27, 243258.CrossRefGoogle Scholar
Shafi, H. S. & Antonia, R. A. 1997 Small-scale characteristics of a turbulent boundary layer over a rough wall. J. Fluid Mech. 342, 263293.CrossRefGoogle Scholar
Shishkina, O. & Wagner, C. 2011 Modelling the influence of wall roughness on heat transfer in thermal convection. J. Fluid Mech. 686, 568582.CrossRefGoogle Scholar
Speziale, C. G. & Gatski, T. B. 1997 Analysis and modelling of anisotropies in the dissipation rate of turbulence. J. Fluid Mech. 344, 155180.CrossRefGoogle Scholar
Thom, A. S. 1971 Momentum absorption by vegetation. Q. J. R. Meteorol. Soc. 97, 414428.CrossRefGoogle Scholar
Townsend, A. A. R. 1980 The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
Vinuesa, R., Noorani, A., Lozano-Durán, A., Khoury, G. K. E., Schlatter, P., Fischer, P. F. & Nagib, H. M. 2014 Aspect ratio effects in turbulent duct flows studied through direct numerical simulation. J. Turbul. 15, 677706.CrossRefGoogle Scholar
Volino, R. J., Schultz, M. P. & Flack, K. A. 2009 Turbulence structure in a boundary layer with two-dimensional roughness. J. Fluid Mech. 635, 75101.CrossRefGoogle Scholar
Wagner, S. & Shishkina, O. 2015 Heat flux enhancement by regular surface roughness in turbulent thermal convection. J. Fluid Mech. 763, 109135.CrossRefGoogle Scholar
Wang, L., Hejcik, J. & Sunden, B. 2007 PIV measurement of separated flow in a square channel with streamwise periodic ribs on one wall. Trans. ASME: J. Fluids Engng 129, 834841.Google Scholar
Wang, L., Salewski, M. & Sundén, B. 2010 Turbulent flow in a ribbed channel: flow structures in the vicinity of a rib. Exp. Therm. Fluid Sci. 34, 165176.CrossRefGoogle Scholar
Wang, L. & Sundén, B. 2005 Experimental investigation of local heat transfer in a square duct with continuous and truncated ribs. Exp. Heat Trans. 18, 179197.CrossRefGoogle Scholar
Xun, Q.-Q. & Wang, B.-C. 2016 Hybrid RANS/LES of turbulent flow in a rotating rib-roughened channel. Phys. Fluids 28, 075101.CrossRefGoogle Scholar
Yaglom, A. M. & Kader, B. A. 1974 Heat and mass transfer between a rough wall and turbulent fluid flow at high Reynolds and peclet numbers. J. Fluid Mech. 62, 601623.CrossRefGoogle Scholar
Yang, D. & Shen, L. 2010 Direct-simulation-based study of turbulent flow over various waving boundaries. J. Fluid Mech. 650, 131180.CrossRefGoogle Scholar
Yokosawa, H., Fujita, H., Hirota, M. & Iwata, S. 1989 Measurement of turbulent flow in a square duct with roughened walls on two opposite sides. Intl J. Heat Fluid Flow 10, 125130.CrossRefGoogle Scholar
Yuan, J. & Piomelli, U. 2014 Roughness effects on the Reynolds stress budgets in near-wall turbulence. J. Fluid Mech. 760, 111.CrossRefGoogle Scholar