Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T06:55:57.503Z Has data issue: false hasContentIssue false

Direct numerical simulations of transitional pulsatile flow through a constriction

Published online by Cambridge University Press:  31 August 2007

N. BERATLIS
Affiliation:
Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
E. BALARAS
Affiliation:
Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
K. KIGER
Affiliation:
Department of Mechanical Engineering, University of Maryland, College Park, MD, USA

Abstract

A combined experimental and numerical study of transitional pulsatile flow through a planar constriction is presented. The parametric space that we adopt is similar to the one reported in a variety of past experiments relevant to the flow through stenosed arteries. In general, the flow just downstream of the constriction is dominated by the dynamic of the accelerating/decelerating jet that forms during each pulsatile cycle. We found a switch in the shedding frequency and roll-up dynamics, just after the flow rate approaches its maximum value in the cycle. The flow in the reattached area further downstream is also affected by the jet dynamics. A ‘synthetic’ turbulent-like wall-layer develops, an is constantly supported by streamwise vortices that originate from the spanwise instabilities of the large coherent structures generated by the jet. The relation of these structures to the phase-averaged turbulent statistics and the turbulent kinetic energy budgets is discussed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adrian, R. J. 1996 Laser velocimetery. In Fluid Mechanics Measurements (ed. Goldstein, R. J.). Taylor & Francis.Google Scholar
Ahmed, S. A. & Giddens, D. P 1984 Pulsatile poststenotic flow studies with laser doppler anemometry. J. Biomech. 17, 695705.CrossRefGoogle ScholarPubMed
Balaras, E. 2004 Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations. J. Fluid Mech. 33, 375404.Google Scholar
Beratlis, N., Balaras, E., Parvinian, B. & Kiger, K. 2005 A numerical and experimental investigation of transitional pulsatile flow in a stenosed channel. J. Biomech. Engn. 127, 11471157.CrossRefGoogle Scholar
Berger, S. A. & Jou, L. D. 2000 Flows in stenotic vessels. Annu. Rev. Fluid Mech. 32, 347382.CrossRefGoogle Scholar
Cassanova, R. A. & Giddens, D. P. 1978 Disorder distal to modeled stenoses in steady and pulsatile flow. J. Biomech. 11, 441453.CrossRefGoogle ScholarPubMed
Davies, P. F., Remuzzi, A., Gordon, E. J., Dewey, C. F. & Gimbrone, M. A. 1986 Turbulent Fluid Shear Stress Induces Vascular Endothelial Cell Turnover in vitro. Proc. Natl Acad. Scie. USA 83, No. 7, pp. 21142117.CrossRefGoogle ScholarPubMed
Gharib, M., Rambod, E. & Shariff, K. 1998 A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121140.CrossRefGoogle Scholar
Heist, D. K., Hanratty, T. J. & Na, Y. 2000 Observations of the formation of streamwise vortices by rotation of arch vortices. Phys. Fluid. 12, 29652975.CrossRefGoogle Scholar
Hunt, J. C. R., Wray, A. A. & Moin, P. 1988 Eddies, streams and convergence zones in turbulent flows. Center for Turbulence Research, Proceedings of the Summer Program 1988, p. 193.Google Scholar
Khalifa, A. M. A. & Giddens, D. P. 1978 Analysis of disorder in pulsatile flows with application to poststenotic blood velocity measurement in dogs. J. Biomech. 11, 129141.CrossRefGoogle ScholarPubMed
Khalifa, A. M. A. & Giddens, D. P. 1981 Characterization and evolution of poststenotic flow disturbances. J. Biomech. 14, 279296.CrossRefGoogle ScholarPubMed
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 117, 133166.CrossRefGoogle Scholar
Ku, D. N. 1997 Blood flow in arteries. Annu. Rev. Fluid Mech. 29, 399434.CrossRefGoogle Scholar
Lasheras, J. C., Cho, J. S. & Maxworthy, T. 1986 On the origin and evolution of streamwise vortical structures in a plane, free shear layer. J. Fluid Mech. 172, 231258.Google Scholar
Lieber, B. B. & Giddens, D. P. 1990 Post-stenotic core flow behavior in pulsatile flow and its effects on wall shear stress. J. Biomech. 23, 597605.CrossRefGoogle ScholarPubMed
Lu, P. C., Gross, D. R. & Hwang, N. H. C. 1980 Intravascular pressure and velocity fluctuations in pulmonic arterial stenosis. J. Biomech. 13, 291300.CrossRefGoogle ScholarPubMed
Mayo, W. 1978 Spectrum measurements with laser velocimeters. In Dynamic Measurements in Unsteady Flows; Proc. Dynamic Flow Conf. Marseille, France, 1114 September 1978 and Baltimore, USA; Denmark 18–21 September 1978, pp. 851–868.Google Scholar
Mittal, R., Simmons, S. P. & Udakumar, H. S. 2001 Application of large-eddy simulation to the study of pulsatile flow in a modeled arterial stenosis. J. Biomech. Engn. 123, 325332.CrossRefGoogle Scholar
Ojha, M., Richar, S. C. C., Johnston, K. W. & Hummel, R. L. 1984 Pulsatile flow through constricted tubes: an experimental investigation using photochromic tracer methods. J. Fluid Mech. 203, 173197.CrossRefGoogle Scholar
Orlansky, I. 1974 A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys. 21, 251269.CrossRefGoogle Scholar
Panton, R. 1996 Incompressible Flow, 2nd edn. John Wiley & Sons.Google Scholar
Poelma, C. 2004 Experiments in particle-laden turbulence. PhD Thesis, Technische Universiteit Delft.Google Scholar
Poelma, C., Westerweel, J. & Ooms, G. 2006 Turbulence statistics from optical whole-field measurements in particle-laden turbulence. Exps. Fluid. 40, 663.CrossRefGoogle Scholar
Rogallo, R. S. 1981 Numerical experiments in homogeneous turbulence. NASA Tech. Mem. 81315.Google Scholar
Rosenfeld, M., Rambod, E. & Gharib, M. 1998 Circulation and formation number of laminar vortex rings. J. Fluid Mech. 376, 297318.CrossRefGoogle Scholar
Ryval, J., Straatman, A. G. & Steinman, D. A. 2004 Two-equation turbulence modeling of pulsatile flow in a stenosed tube. J. Biomech. Eng. 126, 625635.CrossRefGoogle Scholar
Scotti, A. & Piomelli, U. 2001a Numerical simulation of pulsating turbulent channel flow. Phys. Fluid. 13, 13671384.CrossRefGoogle Scholar
Scotti, A. & Piomelli, U. 2001b Turbulence models in pulsating flows. AIAA Paper. 2001–0729.Google Scholar
Sherwin, S. J. & Blackburn, H. M. 2005 Three-dimensional instabilities and transition of steady and pulsatile axisymmetric stenotic flows. J. Fluid Mech. 533, 297327.CrossRefGoogle Scholar
Siouffi, M., Deplano, R. & Pelissier, R. 1998 Experimental analysis of unsteady flows through a stenosis. J. Biomech. 32, 1119.Google Scholar
Stettler, J. C. & Hussain, K. M. F. 1986 On transition of the pulsatile flow. J. Fluid Mech. 170, 169197.CrossRefGoogle Scholar
Stroud, J. S., Berger, S. A. & Saloner, D. 2002 Numerical analysis of flow through a severely stenotic carotid artery bifurcation. J. Biomech. Engn. 124, 920.CrossRefGoogle ScholarPubMed
Varghese, S. S & Frankel, S. H. 2003 Numerical modeling of pulsatile turbulent flow in stenotic vessels. J. Biomech. Engn. 125, 335460.Google ScholarPubMed
Wallace, J. M., Eckelmann, H. & Brodkey, R. S. 1972 The wall region in turbulent shear flow. J. Fluid Mech. 54, 3948.CrossRefGoogle Scholar
Zhao, W., Frankel, S. H., & Mongeau, L. G. 2000 Effects of trailing jet instability on vortex ring formation. Phys. Fluid. 12, 589596.Google Scholar