Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-14T06:44:02.713Z Has data issue: false hasContentIssue false

Dynamics and equilibria of thin viscous coating films on a rotating sphere

Published online by Cambridge University Press:  23 February 2016

D. Kang
Affiliation:
Institute of Mathematical Sciences, Claremont Graduate University, Claremont, CA 91711, USA
A. Nadim
Affiliation:
Institute of Mathematical Sciences, Claremont Graduate University, Claremont, CA 91711, USA
M. Chugunova*
Affiliation:
Institute of Mathematical Sciences, Claremont Graduate University, Claremont, CA 91711, USA
*
Email address for correspondence: marina.chugunova@cgu.edu

Abstract

We examine the dynamics of a thin viscous liquid film on the outer surface of a solid sphere rotating around its vertical axis in the presence of gravity. An asymptotic model describing the evolution of the film thickness is derived in the rotating frame based on the lubrication approximation. The model includes the centrifugal and gravity forces and the stabilizing effect of surface tension. Depending on the values of the parameters, the problem admits different types of steady states: one with a uniformly positive film thickness, or those with one or two dry zones on the sphere. We prove that all steady states are energy minimizers and hence global attractors for axisymmetric states.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bankoff, S. G. 1971 Stability of liquid flow down a heated inclined plane. Intl J. Heat Mass Transfer 14 (3), 377385.Google Scholar
Benilov, E. S., Benilov, M. S. & Kopteva, N. 2008 Steady rimming flows with surface tension. J. Fluid Mech. 597, 91118.CrossRefGoogle Scholar
Benilov, E. S., O’Brien, S. B. G. & Sazonov, I. A. 2003 A new type of instability: explosive disturbances in a liquid film inside a rotating horizontal cylinder. J. Fluid Mech. 497, 201224.Google Scholar
Benilov, E. S. & Oron, A. 2010 The height of a static liquid column pulled out of an infinite pool. Phys. Fluids 22 (10), 102101.Google Scholar
Benjamin, T. B. 1957 Wave formation in laminar flow down an inclined plane. J. Fluid Mech. 2 (06), 554573.CrossRefGoogle Scholar
Burchard, A., Chugunova, M. & Stephens, B. 2012 Convergence to equilibrium for a thin film equation on a cylindrical surface. Commun. Part. Diff. Equ. 37, 585609.CrossRefGoogle Scholar
Evans, P. L., Schwartz, L. W. & Roy, R. V. 2004 Steady and unsteady solutions for coating flow on a rotating horizontal cylinder: two-dimensional theoretical and numerical modeling. Phys. Fluids 16 (8), 27422756.Google Scholar
Giacomelli, L. 1999 A fourth-order degenerate parabolic equation describing thin viscous flows over an inclined plane. Appl. Maths Lett. 12 (8), 107111.Google Scholar
Hocking, L. M. 1990 Spreading and instability of a viscous fluid sheet. J. Fluid Mech. 211, 373392.CrossRefGoogle Scholar
Johnson, R. E. 1988 Steady-state coating flows inside a rotating horizontal cylinder. J. Fluid Mech. 190, 321342.Google Scholar
Karabut, E. A. 2007 Two regimes of liquid film flow on a rotating cylinder. J. Appl. Mech. Tech. Phys. 48 (1), 5564.Google Scholar
Kelmanson, M. A. 2009 On inertial effects in the Moffatt–Pukhnachov coating-flow problem. J. Fluid Mech. 633, 327353.Google Scholar
Levy, R., Shearer, M. & Witelski, T. P. 2007 Gravity-driven thin liquid films with insoluble surfactant: smooth traveling waves. Eur. J. Appl. Maths 18 (6), 679708.Google Scholar
Li, L., Braun, R. J., Maki, K. L., Henshaw, W. D. & King-Smith, P. E. 2014 Tear film dynamics with evaporation, wetting, and time-dependent flux boundary condition on an eye-shaped domain. Phys. Fluids 26 (5), 052101.CrossRefGoogle Scholar
Moffatt, H. K. 1977 Behaviour of a viscous film on the outer surface of a rotating cylinder. J. Méc. 16 (5), 651673.Google Scholar
Myers, T. G., Charpin, J. P. F. & Chapman, S. J. 2002 The flow and solidification of a thin fluid film on an arbitrary three-dimensional surface. Phys. Fluids 14 (8), 27882803.Google Scholar
O’Brien, S. B. G. 1998 A model for the coating of cylindrical light bulbs. Prog. Indust. Math. ECMI 98, 4554.Google Scholar
Parmar, N. H., Tirumkudulu, M. S. & Hinch, E. J. 2009 Coating flow of viscous liquids on a rotating vertical disk. Phys. Fluids 21, 103102.Google Scholar
Peterson, E. R. & Shearer, M. 2011 Radial spreading of a surfactant on a thin liquid film. Appl. Maths Res. Exp. 2011 (1), 122.Google Scholar
Pukhnachev, V. V. 1977 Motion of a liquid film on the surface of a rotating cylinder in a gravitational field. J. Appl. Mech. Tech. Phys. 18 (3), 344351.Google Scholar
Pukhnachov, V. V. 2005 Capillary/gravity film flows on the surface of a rotating cylinder. J. Math. Sci. 130 (4), 48714883.Google Scholar
Sahu, A. K. & Kumar, S. 2014 Thin-liquid-film flow on a topographically patterned rotating cylinder. Phys. Fluids 26 (4), 042102.Google Scholar
Shearer, M. & Levy, R. 2006 The motion of a thin liquid film driven by surfactant and gravity. SIAM J. Appl. Maths 66 (5), 15881609.Google Scholar
Takagi, D. & Huppert, H. E. 2010 Flow and instability of thin films on a cylinder and sphere. J. Fluid Mech. 647, 221238.Google Scholar
Tuck, E. O. & Schwartz, L. W. 1991 Thin static drops with a free attachment boundary. J. Fluid Mech. 223, 313324.Google Scholar