Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T06:54:38.499Z Has data issue: false hasContentIssue false

The dynamics of breaking internal solitary waves on slopes

Published online by Cambridge University Press:  27 November 2014

Robert S. Arthur*
Affiliation:
The Bob and Norma Street Environmental Fluid Mechanics Laboratory, Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA
Oliver B. Fringer
Affiliation:
The Bob and Norma Street Environmental Fluid Mechanics Laboratory, Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA
*
Email address for correspondence: barthur@stanford.edu

Abstract

Using direct numerical simulations (DNS), we investigate the structure and energetics of breaking internal waves on slopes. We employ a Navier–Stokes code in an idealized three-dimensional domain where an internal solitary wave of depression impinges upon a sloping bottom. Seven cases with varying initial wave amplitude and bathymetric slope, but constant wave Reynolds number $\mathit{Re}_{w}$ are considered. Volume-integrated values of dissipation and irreversible mixing are related to the density and velocity structure of the wave throughout the breaking process. The majority of dissipation (63 %) occurs along the no-slip bottom boundary. Most of the remaining dissipation (35 %) and nearly all irreversible mixing occurs in the interior after breaking, when density overturns are present at the interface. Breaking introduces three-dimensionality to the flow field that is driven by the lateral breakdown of density overturns and the lobe–cleft instability typical of gravity currents. The resulting longitudinal rolls (streamwise vorticity) increase dissipation by roughly 8 % and decrease irreversible mixing by roughly 20 % when compared with a similar two-dimensional simulation. The bulk mixing efficiency is shown to increase for larger and smaller values of the internal Iribarren number ${\it\xi}$, with a minimum for intermediate values of ${\it\xi}$ and a peak near ${\it\xi}=0.8$ for plunging breakers. This trend is explained by the degree of two-dimensionality in the flow, and agrees with previous results in the literature after accounting for Reynolds number effects. Local turbulence quantities are also calculated at ‘virtual moorings’, and a location upslope of the breakpoint but downslope of the intersection of the pycnocline and the bottom is shown to provide a signal that is most representative of the volume-integrated dissipation and mixing results.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aghsaee, P., Boegman, L., Diamessis, P. J. & Lamb, K. G. 2012 Boundary-layer-separation-driven vortex shedding beneath internal solitary waves of depression. J. Fluid Mech. 690, 321344.Google Scholar
Aghsaee, P., Boegman, L. & Lamb, K. G. 2010 Breaking of shoaling internal solitary waves. J. Fluid Mech. 659, 289317.Google Scholar
Aucan, J., Merrifield, M. A., Luther, D. S. & Flament, P. 2006 Tidal mixing events on the deep flanks of Kaena Ridge, Hawaii. J. Phys. Oceanogr. 36 (6), 12021219.Google Scholar
Boegman, L., Ivey, G. N. & Imberger, J. 2005 The degeneration of internal waves in lakes with sloping topography. Limnol. Oceanogr. 50 (5), 16201637.Google Scholar
Bouffard, D. & Boegman, L. 2013 A diapycnal diffusivity model for stratified environmental flows. Dyn. Atmos. Oceans 61, 1434.Google Scholar
Bourgault, D., Blokhina, M. D., Mirshak, R. & Kelley, D. E. 2007a Evolution of a shoaling internal solitary wavetrain. Geophys. Res. Lett. 34, L03601.Google Scholar
Bourgault, D. & Kelley, D. E. 2007b On the reflectance of uniform slopes for normally incident interfacial solitary waves. J. Phys. Oceanogr. 37 (5), 11561162.CrossRefGoogle Scholar
Bourgault, D., Morsilli, M., Richards, C., Neumeier, U. & Kelley, D. E. 2014 Sediment resuspension and nepheloid layers induced by long internal solitary waves shoaling orthogonally on uniform slopes. Cont. Shelf Res. 72, 2133.CrossRefGoogle Scholar
Caulfield, C. P. & Peltier, W. R. 2000 The anatomy of the mixing transition in homogeneous and stratified free shear layers. J. Fluid Mech. 413, 147.Google Scholar
Chou, Y. J. & Fringer, O. B. 2010 A model for the simulation of coupled flow-bed form evolution in turbulent flows. J. Geophys. Res. 115, C10041.Google Scholar
Cui, A.1999 On the parallel computation of turbulent rotating stratified flows. PhD thesis, Stanford University.Google Scholar
Davis, K. A. & Monismith, S. G. 2011 The modification of bottom boundary layer turbulence and mixing by internal waves shoaling on a barrier reef. J. Phys. Oceanogr. 41 (11), 22232241.CrossRefGoogle Scholar
Dörnbrack, A. 1998 Turbulent mixing by breaking gravity waves. J. Fluid Mech. 375, 113141.Google Scholar
Fringer, O. B.2003 Numerical simulations of breaking interfacial waves. PhD thesis, Stanford University.Google Scholar
Fringer, O. B. & Street, R. L. 2003 The dynamics of breaking progressive interfacial waves. J. Fluid Mech. 494, 319353.CrossRefGoogle Scholar
Gayen, B. & Sarkar, S. 2010 Turbulence during the generation of internal tide on a critical slope. Phys. Rev. Lett. 104 (21), 218502.CrossRefGoogle ScholarPubMed
Gayen, B. & Sarkar, S. 2011 Boundary mixing by density overturns in an internal tidal beam. Geophys. Res. Lett. 38 (14), L14608.Google Scholar
Härtel, C., Carlsson, F. & Thunblom, M. 2000 Analysis and direct numerical simulation of the flow at a gravity-current head. Part 2. The lobe-and-cleft instability. J. Fluid Mech. 418, 213229.CrossRefGoogle Scholar
Helfrich, K. R. 1992 Internal solitary wave breaking and run-up on a uniform slope. J. Fluid Mech. 243, 133154.Google Scholar
Helfrich, K. R. & Melville, W. K. 2006 Long nonlinear internal waves. Annu. Rev. Fluid Mech. 38, 395425.Google Scholar
Hult, E. L., Troy, C. D. & Koseff, J. R. 2011 The mixing efficiency of interfacial waves breaking at a ridge: 2. Local mixing processes. J. Geophys. Res. 116, C02004.Google Scholar
Klymak, J. M. & Moum, J. N. 2003 Internal solitary waves of elevation advancing on a shoaling shelf. Geophys. Res. Lett. 30 (20), 2045.Google Scholar
Koltakov, S. & Fringer, O. B. 2012 Moving grid method for numerical simulation of stratified flows. Intl J. Numer. Meth. Fluids 71 (12), 15241545.CrossRefGoogle Scholar
Lamb, K. G. 2002 A numerical investigation of solitary internal waves with trapped cores formed via shoaling. J. Fluid Mech. 451, 109144.CrossRefGoogle Scholar
Leichter, J. J., Wing, S. R., Miller, S. L. & Denny, M. W. 1996 Pulsed delivery of subthermocline water to Conch Reef (Florida Keys) by internal tidal bores. Limnol. Oceanogr. 41 (7), 14901501.CrossRefGoogle Scholar
Li, X., Lu, P., Schaeffer, J., Shillington, J., Wong, P. S. & Shi, H. 1993 On the versatility of parallel sorting by regular sampling. Parallel Comput. 19 (10), 10791103.CrossRefGoogle Scholar
Michallet, H. & Ivey, G. N. 1999 Experiments on mixing due to internal solitary waves breaking on uniform slopes. J. Geophys. Res. 104 (C6), 1346713477.Google Scholar
Munk, W. & Wunsch, C. 1998 Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res. 45 (12), 19772010.CrossRefGoogle Scholar
Nam, S. H. & Send, U. 2011 Direct evidence of deep water intrusions onto the continental shelf via surging internal tides. J. Geophys. Res. 116, C05004.Google Scholar
Omand, M. M., Leichter, J. J., Franks, P. J., Guza, R. T., Lucas, A. J. & Feddersen, F. 2011 Physical and biological processes underlying the sudden appearance of a red-tide surface patch in the nearshore. Limnol. Oceanogr. 56 (3), 787801.Google Scholar
Pineda, J. 1994 Internal tidal bores in the nearshore: warm-water fronts, seaward gravity currents and the onshore transport of neustonic larvae. J. Mar. Res. 52 (3), 427458.CrossRefGoogle Scholar
Scotti, A. & Pineda, J. 2004 Observation of very large and steep internal waves of elevation near the Massachusetts coast. Geophys. Res. Lett. 31 (22), L22307.Google Scholar
Scotti, A. & White, B. 2014 Diagnosing mixing in stratified turbulent flows with a locally defined available potential energy. J. Fluid Mech. 740, 114135.Google Scholar
Shih, L. H., Koseff, J. R., Ivey, G. N. & Ferziger, J. H. 2005 Parameterization of turbulent fluxes and scales using homogeneous sheared stably stratified turbulence simulations. J. Fluid Mech. 525, 193214.CrossRefGoogle Scholar
Shroyer, E. L., Moum, J. N. & Nash, J. D. 2009 Observations of polarity reversal in shoaling nonlinear internal waves. J. Phys. Oceanogr. 39 (3), 691701.Google Scholar
Simpson, J. E. 1972 Effects of the lower boundary on the head of a gravity current. J. Fluid Mech. 53 (4), 759768.CrossRefGoogle Scholar
Smyth, W. D. & Winters, K. B. 2003 Turbulence and mixing in Holmboe waves. J. Phys. Oceanogr. 33 (4), 694711.2.0.CO;2>CrossRefGoogle Scholar
Troy, C. D. & Koseff, J. R. 2005 The instability and breaking of long internal waves. J. Fluid Mech. 543, 107136.CrossRefGoogle Scholar
Venayagamoorthy, S. K. & Fringer, O. B. 2007 On the formation and propagation of nonlinear internal boluses across a shelf break. J. Fluid Mech. 577, 137159.Google Scholar
Vlasenko, V. & Hutter, K. 2002 Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography. J. Phys. Oceanogr. 32 (6), 17791793.Google Scholar
Vlasenko, V. & Stashchuk, N. 2007 Three-dimensional shoaling of large-amplitude internal waves. J. Geophys. Res. 112, C11018.Google Scholar
Wallace, B. C. & Wilkinson, D. L. 1988 Run-up of internal waves on a gentle slope in a two-layered system. J. Fluid Mech. 191, 419442.Google Scholar
Walter, R. K.2014 Nonlinear internal waves, internal bores, and turbulent mixing in the nearshore coastal environment. PhD thesis, Stanford University.Google Scholar
Walter, R. K., Woodson, C. B., Arthur, R. S., Fringer, O. B. & Monismith, S. G. 2012 Nearshore internal bores and turbulent mixing in southern Monterey Bay. J. Geophys. Res. 117, C07017.Google Scholar
Walter, R. K., Woodson, C. B., Leary, P. R. & Monismith, S. G. 2014 Connecting wind-driven upwelling and offshore stratification to nearshore internal bores and oxygen variability. J. Geophys. Res. 116 (6), 35173534.Google Scholar
Winters, K. B. & D’Asaro, E. A. 1994 Three-dimensional wave instability near a critical level. J. Fluid Mech. 272, 255284.CrossRefGoogle Scholar
Winters, K. B., Lombard, P. N., Riley, J. J. & D’Asaro, E. A. 1995 Available potential energy and mixing in density-stratified fluids. J. Fluid Mech. 289, 115128.Google Scholar
Zang, Y., Street, R. L. & Koseff, J. R. 1993 A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys. Fluids A 5 (12), 31863196.Google Scholar
Zang, Y., Street, R. L. & Koseff, J. R. 1994 A non-staggered grid, fractional step method for time-dependent incompressible Navier–Stokes equations in curvilinear coordinates. J. Comput. Phys. 114, 1833.Google Scholar