Published online by Cambridge University Press: 26 April 2006
The evolution of three-dimensional disturbances in an incompressible mixing layer in an inviscid fluid is investigated as an initial-value problem. A Green's function approach is used to obtain a general space–time solution to the problem using a piecewise linear model for the basic flow, thereby making it possible to determine complete and closed-form analytical expressions for the variables with arbitrary input. Structure, kinetic energy, vorticity, and the evolution of material particles can be ascertained in detail. Moreover, these solutions represent the full three-dimensional disturbances that can grow exponentially or algebraically in time. For large time, the behaviour of these disturbances is dominated by the exponentially increasing discrete modes. For the early time, the behaviour is controlled by the algebraic variation due to the continuous spectrum. Contrary to Squire's theorem for normal mode analysis, the early-time behaviour indicates growth at comparable rates for all values of the wavenumbers and the initial growth of these disturbances is shown to rapidly increase. In particular, the disturbance kinetic energy can rise to a level approximately ten times its initial value before the exponentially growing normal mode prevails. As a result, the transient behaviour can trigger the roll-up of the mixing layer and its development into the well-known pattern that has been observed experimentally.