Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-14T06:59:52.113Z Has data issue: false hasContentIssue false

Effect of a mesh on boundary layer transitions induced by free-stream turbulence and an isolated roughness element

Published online by Cambridge University Press:  07 May 2015

P. Phani Kumar
Affiliation:
Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012, India
A. C. Mandal
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology, Kanpur, UP 208016, India
J. Dey*
Affiliation:
Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012, India
*
Email address for correspondence: jd@aero.iisc.ernet.in

Abstract

Streamwise streaks, their lift-up and streak instability are integral to the bypass transition process. An experimental study has been carried out to find the effect of a mesh placed normal to the flow and at different wall-normal locations in the late stages of two transitional flows induced by free-stream turbulence (FST) and an isolated roughness element. The mesh causes an approximately 30 % reduction in the free-stream velocity, and mild acceleration, irrespective of its wall-normal location. Interestingly, when located near the wall, the mesh suppresses several transitional events leading to transition delay over a large downstream distance. The transition delay is found to be mainly caused by suppression of the lift-up of the high-shear layer and its distortion, along with modification of the spanwise streaky structure to an orderly one. However, with the mesh well away from the wall, the lifted-up shear layer remains largely unaffected, and the downstream boundary layer velocity profile develops an overshoot which is found to follow a plane mixing layer type profile up to the free stream. Reynolds stresses, and the size and strength of vortices increase in this mixing layer region. This high-intensity disturbance can possibly enhance transition of the accelerated flow far downstream, although a reduction in streamwise turbulence intensity occurs over a short distance downstream of the mesh. However, the shape of the large-scale streamwise structure in the wall-normal plane is found to be more or less the same as that without the mesh.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acarlar, M. S. & Smith, C. R. 1987 A study of hairpin vortices in a laminar boundary layer. Part 1. Hairpin vortices generated by a hemisphere protuberance. J. Fluid Mech. 175, 141.CrossRefGoogle Scholar
Adrian, R. J., Christensen, K. T. & Liu, Z. C. 2000 Analysis and interpretation of instantaneous turbulent velocity fields. Exp. Fluid 29, 275290.Google Scholar
Asai, M., Minagawa, M. & Nishioka, M. 2002 The instability and breakdown of a near-wall low-speed streak. J. Fluid Mech. 455, 289314.CrossRefGoogle Scholar
Bade, K. & Naguib, A. 2012 Characteristics of a streak disturbance induced by an isolated roughness element. Bull. Am. Phys. Soc. (In 65th Annual meeting of APS Division of Fluid Dynamics, San Diego, California) 57 (17).Google Scholar
Bai, H. L., Zhou, Y., Zhang, W. G., Xu, S. J., Wang, Y. & Antonia, R. A. 2014 Active control of a turbulent boundary layer based on local surface perturbation. J. Fluid Mech. 750, 316354.Google Scholar
Bakchinov, A. A., Grek, G. R., Klingmann, B. G. B. & Kozlov, V. V. 1995 Transition experiments in a boundary layer with embedded streamwise vortices. Phys. Fluids 7, 820832.Google Scholar
Bernal, L. P. & Roshko, A. 1986 Streamwise vortex structure in plane mixing layers. J. Fluid Mech. 170, 499525.Google Scholar
Bertolotti, F. P. & Kendall, J. M.1997 Response of the Blasius boundary layer to controlled free-stream vortices of axial form. AIAA Paper 97–2018.Google Scholar
Bi, C. -W., Zhao, Y. P., Dong, G. H., Xu, T. J. & Gui, F. K. 2014 Numerical simulation of the interaction between flow and flexible nets. J. Fluids Struct. 45, 180201.CrossRefGoogle Scholar
Blackwelder, R. F. & Kovasznay, L. S. G. 1972 Large-scale motion of a turbulent boundary layer during relaminarization. J. Fluid Mech. 53, 6183.Google Scholar
Boiko, A. V. 2001 Flat-plate boundary layer receptivity to a steady free-stream vortex disturbance. Fluid Dyn. 36 (6), 915925.Google Scholar
Brandt, L. 2007 Numerical studies of the instability and breakdown of a boundary-layer low-speed streak. Eur. J. Mech. (B/Fluids) 26, 6482.CrossRefGoogle Scholar
Brandt, L. 2014 The lift-up effect: the linear mechanism behind transition and turbulence in shear flows. Eur. J. Mech. (B/Fluids) 47, 8096.Google Scholar
Brandt, L. & de Lange, H. C. 2008 Streak interactions and breakdown in boundary layer flows. Phys. Fluids 20, 024107.Google Scholar
Brandt, L., Schlatter, P. & Henningson, D. S. 2004 Transition in boundary layers subject to free-stream turbulence. J. Fluid Mech. 517, 167198.Google Scholar
Chernoray, V. G., Kozlov, V. V., Löfdahl, L. & Chun, H. H. 2006 Visualization of sinusoidal and varicose instabilities of streaks in a boundary layer. J. Vis. 9, 437444.CrossRefGoogle Scholar
Choudhari, M. & Fischer, P.2005 Roughness-induced transient growth. In 35th AIAA Fluid Dynamics Conference and Exhibit, Toronto, Ontario Canada. AIAA Paper 2005-4765.Google Scholar
Christensen, K. T. & Adrian, R. J. 2001 Statistical evidence of hairpin vortex packets in wall turbulence. J. Fluid Mech. 431, 433443.Google Scholar
Cossu, C. & Brandt, L. 2002 Stabilization of Tollmien–Schlichting waves by finite amplitude optimal streaks in the Blasius boundary layer. Phys. Fluids 14 (8), L57L60.Google Scholar
Dhawan, S. & Narasimha, R. 1957 Some properties of boundary layer flow during the transition from laminar to turbulent motion. J. Fluid Mech. 3, 418436.Google Scholar
Dixit, S. A. & Ramesh, O. N. 2010 Large-scale structures in turbulent and reverse-transitional sink flow boundary layers. J. Fluid Mech. 649, 233273.Google Scholar
Durbin, P. & Wu, X. 2007 Transition beneath vortical disturbances. Annu. Rev. Fluid Mech. 39, 107128.CrossRefGoogle Scholar
Elofsson, P. A., Kawakami, M. & Alfredsson, P. H. 1999 Experiments on the stability of streamwise streaks in plane Poiseuille flow. Phys. Fluids 11, 915930.CrossRefGoogle Scholar
Fransson, J. H. M., Brandt, L., Talamelli, A. & Cossu, C. 2004 Experimental and theoretical investigation of the nonmodal growth of steady streaks in a flat plate boundary layer. Phys. Fluids 16, 36273638.Google Scholar
Fransson, J. H. M., Brandt, L., Talamelli, A. & Cossu, C. 2005 Experimental study of the stabilization of Tollmien–Schlichting waves by finite amplitude streaks. Phys. Fluids 17, 054110.Google Scholar
Fransson, J. H. M., Talamelli, A., Brandt, L. & Cossu, C. 2006 Delaying transition to turbulence by a passive mechanism. Phys. Rev. Lett. 96, 064501.Google Scholar
Ganapathisubramani, B., Longmire, E. K. & Marusic, I. 2003 Characteristics of vortex packets in turbulent boundary layers. J. Fluid Mech. 478, 3546.CrossRefGoogle Scholar
Guala, M., Hommema, S. E. & Adrian, R. J. 2006 Large-scale and very-large-scale motions in turbulent pipe flow. J. Fluid Mech. 554, 521542.Google Scholar
Hack, M. J. P. & Zaki, T. A. 2014 Streak instabilities in boundary layers beneath free-stream turbulence. J. Fluid Mech. 741, 280315.Google Scholar
Hanson, R. E., Bade, K. M., Belson, B. A., Lavoie, P., Naguib, A. M. & Rowley, C. W. 2014 Feedback control of slowly-varying transient growth by an array of plasma actuators. Phys. Fluids 26, 024102.Google Scholar
He, G. S., Pan, C. & Wang, J. J. 2013 Dynamics of vortical structures in cylinder/wall interaction with moderate gap ratio. J. Fluids Struct. 43, 100109.Google Scholar
Hernon, D., Walsh, E. J. & McEligot, M. 2007 Experimental investigation into the routes to bypass transition and the shear-sheltering phenomenon. J. Fluid Mech. 591, 461479.Google Scholar
Hladík, O., Jonáš, P. & Uruba, V. 2011 Dynamics of turbulent spots in transitional boundary layer. J. Phys.: Conf. Ser. 318, 032028.Google Scholar
Hong, J., Katz, J. & Schultz, M. P. 2011 Near-wall turbulence statistics and flow structures over three-dimensional roughness in a turbulent channel flow. J. Fluid Mech. 667, 137.Google Scholar
Imayama, S., Alfredsson, P. H. & Lingwood, R. J. 2012 A new way to describe the transition characteristics of a rotating-disk boundary-layer flow. Phys. Fluids 24, 031701.Google Scholar
Jacobs, R. G. & Durbin, P. A. 2001 Simulations of bypass transition. J. Fluid Mech. 428, 185212.Google Scholar
Kähler, C. J. 2004 Investigation of the spatio-temporal flow structure in the buffer region of a turbulent boundary layer by means of a multiplane stereo PIV. Exp. Fluids 36, 114130.CrossRefGoogle Scholar
Kendall, J. M.1998 Experiments on boundary-layer receptivity to freestream turbulence. AIAA Paper 98-0530.Google Scholar
Klebanoff, P. S., Cleveland, W. G. & Tidstrom, K. D. 1992 On the evolution of a turbulent boundary layer induced by a three-dimensional roughness element. J. Fluid Mech. 237, 101187.CrossRefGoogle Scholar
Landahl, M. T. 1980 A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 98, 243251.CrossRefGoogle Scholar
Litvinenko, Y. A., Chernoraĭ, V. G., Kozlov, V. V., Lofdahl, L., Grek, G. R. & Chun, H. H. 2005 Nonlinear sinusoidal and varicose instability in a boundary layer. Dokl. Phys. 50, 147150.CrossRefGoogle Scholar
Loucks, R. B. & Wallace, J. M. 2012 Velocity and velocity gradient based properties of a turbulent plane mixing layer. J. Fluid Mech. 699, 280319.Google Scholar
Luchini, P. 2000 Reynolds-number-independent instability of the boundary layer over a flat surface: optimal perturbations. J. Fluid Mech. 404, 289309.Google Scholar
Lundell, F. 2007 Reactive control of transition induced by free-stream turbulence: an experimental demonstration. J. Fluid Mech. 585, 4171.Google Scholar
Lundell, F. & Alfredsson, P. H. 2003 Experiments on control of streamwise streaks. Eur. J. Mech. (B/Fluids) 22, 279290.Google Scholar
Mandal, A. C. & Dey, J. 2011 An experimental study of boundary layer transition induced by a cylinder wake. J. Fluid Mech. 684, 6084.CrossRefGoogle Scholar
Mandal, A. C. & Dey, J.2015 An experimental study on the generation and breakdown of boundary layer streaks. Manuscript is under preparation only.Google Scholar
Mandal, A. C., Venkatakrishnan, L. & Dey, J. 2010 A study on boundary-layer transition induced by free-stream turbulence. J. Fluid Mech. 660, 114146.CrossRefGoogle Scholar
Mans, J., Kadijk, E. C., de Lange, H. C. & van Steenhoven, A. A. 2005 Breakdown in a boundary layer exposed to free-stream turbulence. Exp. Fluids 39, 10711083.Google Scholar
Manu, K. V.2013 Experiments on the late stages of boundary layer transition. PhD thesis, Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India.Google Scholar
Manu, K. V., Mathew, J. & Dey, J. 2010 Evolution of isolated streamwise vortices in the late stages of boundary layer transition. Exp. Fluids 48, 431440.CrossRefGoogle Scholar
Matsubara, M. & Alfredsson, P. H. 2001 Disturbance growth in boundary layers subjected to free-stream turbulence. J. Fluid Mech. 430, 149168.Google Scholar
Monokrousos, A., Brandt, L., Schlatter, P. & Henningson, D. S. 2008 DNS and LES of estimation and control of transition in boundary layers subject to free-stream turbulence. Intl J. Heat Fluid Flow 29, 841855.Google Scholar
Narasimha, R. & Prasad, S. N. 1994 Leading edge shape for flat plate boundary layer studies. Exp. Fluids 17, 358360.CrossRefGoogle Scholar
Narasimha, R. & Sreenivasan, K. R. 1973 Relaminarization in highly accelerated turbulent boundary layers. J. Fluid Mech. 61, 417447.CrossRefGoogle Scholar
Natrajan, V. K., Wu, Y. & Christensen, K. T. 2007 Spatial signatures of retrograde spanwise vortices in wall turbulence. J. Fluid Mech. 574, 155167.Google Scholar
Nolan, K.2009 On the measurement and analysis of turbulent spots evolving naturally due to freestream turbulence. PhD thesis, College of Engineering, University of Limerick, Ireland.Google Scholar
Nolan, K. P. & Walsh, E. J. 2012 Particle image velocimetry measurements of a transitional boundary layer under free stream turbulence. J. Fluid Mech. 702, 215238.CrossRefGoogle Scholar
Nolan, K. P., Walsh, E. J. & McEligot, D. M. 2010 Quadrant analysis of a transitional boundary layer subject to free-stream turbulence. J. Fluid Mech. 658, 310335.Google Scholar
Nolan, K. P. & Zaki, T. A. 2013 Conditional sampling of transitional boundary layers in pressure gradients. J. Fluid Mech. 728, 306339.Google Scholar
Oruç, V. 2012 Passive control of flow structures around a circular cylinder by using screen. J. Fluids Struct. 33, 229242.Google Scholar
Ovchinnikov, V., Choudhari, M. M. & Piomelli, U. 2008 Numerical simulations of boundary-layer bypass transition due to high-amplitude free-stream turbulence. J. Fluid Mech. 613, 135169.Google Scholar
Patten, N., Griffin, P. & Young, T. M. 2013 Effects of freestream turbulence on the characteristics in the boundary layer near the transition onset location. Trans. ASME J. Fluids Engng 135, 071203.Google Scholar
Piomelli, U., Balaras, E. & Pascarelli, A. 2000 Turbulent structures in accelerating boundary layers. J. Turbul. 1 (N1), 116.Google Scholar
Rahgozar, S. & Maciel, Y. 2012 Statistical analysis of low- and high-speed large-scale structures in the outer region of an adverse pressure gradient turbulent boundary layer. J. Turbul. 13 (N46), 124.CrossRefGoogle Scholar
Rogers, M. M. & Moser, R. D. 1992 The three-dimensional evolution of a plane mixing layer: the Kelvin–Helmholtz rollup. J. Fluid Mech. 243, 183226.Google Scholar
Rogers, M. M. & Moser, R. D. 1994 Direct simulation of a selfsimilar turbulent mixing layer. Phys. Fluids 6, 903923.Google Scholar
Schlatter, P., Brandt, L., de Lange, H. C. & Henningson, D. S. 2008 On streak breakdown in bypass transition. Phys. Fluids 20, 101505.Google Scholar
Schrader, L.-U., Brandt, L., Mavriplis, C. & Henningson, D. S. 2010 Receptivity to free-stream vorticity of flow past a flat plate with elliptic leading edge. J. Fluid Mech. 653, 245271.Google Scholar
Schlatter, P., Deusebio, E., de Lange, R. & Brandt, L. 2010 Numerical study of the stabilisation of boundary-layer disturbances by finite amplitude streaks. Intl J. Flow Control 2, 259288.Google Scholar
Shahinfar, S., Fransson, J. H. M., Sattarzadeh, S. S. & Talamelli, A. 2013 Scaling of streamwise boundary layer streaks and their ability to reduce skin-friction drag. J. Fluid Mech. 733, 132.Google Scholar
Shahinfar, S., Sattarzadeh, S. S. & Fransson, J. H. M. 2014 Passive boundary layer control of oblique disturbances by finite-amplitude streaks. J. Fluid Mech. 749, 136.Google Scholar
Tani, I., Komoda, H., Komatsu, Y. & Iuchi, M.1962 Boundary-layer transition by isolated roughness. Tech. Rep. 375. Aeronautical Research Institute, University of Tokyo.Google Scholar
Tomkins, C. D. & Adrian, R. J. 2003 Spanwise structure and scale growth in turbulent boundary layers. J. Fluid Mech. 490, 3774.Google Scholar
Volino, R. J., Schultz, M. P. & Flack, K. A. 2007 Turbulence structure in rough- and smooth-wall boundary layers. J. Fluid Mech. 592, 263293.Google Scholar
Wallace, J. M., Eckelmann, H. & Brodkey, R. S. 1972 The wall region in turbulent shear flow. J. Fluid Mech. 54, 3948.Google Scholar
Wang, J. J., Pan, C. & Zhang, P. F. 2009 On the instability and reproduction mechanism of a laminar streak. J. Turbul. 10 (N26), 127.Google Scholar
Westin, K. J. A., Boiko, A. V., Klingmann, B. G. B., Kozlov, V. V. & Alfredsson, P. H. 1994 Experiments in a boundary layer subjected to free stream turbulence. Part 1. Boundary layer structure and receptivity. J. Fluid Mech. 281, 193218.Google Scholar
White, E. B. 2002 Transient growth of stationary disturbances in a flat plate boundary layer. Phys. Fluids 14, 4429.Google Scholar
Wiecek, K. C. & Mehta, R. D. 1998 Effects of velocity ratio on mixing layer three-dimensionality. Exp. Therm. Fluid Sci. 16, 165176.Google Scholar
Wu, Y. & Christensen, K. T. 2006 Population trends of spanwise vortices in wall turbulence. J. Fluid Mech. 568, 5576.Google Scholar
Zaki, T. A. 2013 From streaks to spots and on to turbulence: exploring the dynamics of boundary layer transition. Flow Turbul. Combust. 91, 451473.Google Scholar
Zaki, T. A. & Durbin, P. A. 2005 Mode interaction and the bypass route to transition. J. Fluid Mech. 531, 85111.Google Scholar
Zhang, C., Pan, C. & Wang, J. J. 2011 Evolution of vortex structure in boundary layer transition induced by roughness elements. Exp. Fluids 51, 13431352.Google Scholar