Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T10:55:55.048Z Has data issue: false hasContentIssue false

The effect of flow confinement on laminar shock-wave/boundary-layer interactions

Published online by Cambridge University Press:  11 June 2020

David J. Lusher*
Affiliation:
Aerodynamics and Flight Mechanics Group, University of Southampton, Boldrewood Campus, Southampton SO16 7QF, UK
Neil D. Sandham
Affiliation:
Aerodynamics and Flight Mechanics Group, University of Southampton, Boldrewood Campus, Southampton SO16 7QF, UK
*
Email address for correspondence: D.Lusher@soton.ac.uk

Abstract

Numerical work on shock-wave/boundary-layer interactions (SBLI) to date has largely focused on span-periodic quasi-two-dimensional (quasi-2-D) configurations that neglect the influence lateral confinement has on the core flow. The present study is concerned with the effect of flow confinement on Mach 2 laminar SBLI in rectangular ducts. An oblique shock generated by a $2^{\circ }$ wedge forms a conical swept SBLI with sidewall boundary layers before reflecting from the bottom wall of the domain. Multiple large regions of flow-reversal are observed on the sidewalls, bottom wall and at the corner intersection. The main interaction is found to be strongly three-dimensional and highly dependent on the geometry of the duct. Comparison to quasi-2-D span-periodic simulations showed sidewalls strengthen the interaction by 31 % for the baseline configuration with an aspect ratio of one. The length of the shock generator and subsequent trailing edge expansion fan position was shown to be a critical parameter in determining the central separation length. By shortening the length of the shock generator, modification of the interaction and suppression of the central interaction is demonstrated. Parametric studies of shock strength and duct aspect ratio were performed to find limiting behaviours. For the largest aspect ratio of four, three-dimensionality was visible across 30 % of the span width away from the wall. The topology of the three-dimensional separation is shown to be similar to ‘owl-like’ separations of the first kind. Reflection of the initial conical swept SBLI is found to be the most significant factor determining the flow structures downstream of the main interaction.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamson, T. C. & Messiter, A. F. 1980 Analysis of two-dimensional interactions between shock waves and boundary layers. Annu. Rev. Fluid Mech. 12 (1), 103138.CrossRefGoogle Scholar
Babinsky, H. & Harvey, J. K. 2011 Shock Wave–Boundary-Layer Interactions. Cambridge University Press.CrossRefGoogle Scholar
Babinsky, H., Oorebeek, J. & Cottingham, T. 2013 Corner effects in reflecting oblique shock-wave/boundary-layer interactions. In 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. American Institute of Aeronautics and Astronautics.Google Scholar
Benek, J., Suchyta, C. & Babinsky, H. 2013 The effect of tunnel size on incident shock boundary layer interaction experiments. In 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. American Institute of Aeronautics and Astronautics.Google Scholar
Benek, J. A., Suchyta, C. J. & Babinsky, H. 2016 Simulations of incident shock boundary layer interactions. In 54th AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics.Google Scholar
Bermejo-Moreno, I., Campo, L., Larsson, J., Bodart, J., Helmer, D. & Eaton, J. K. 2014 Confinement effects in shock wave/turbulent boundary layer interactions through wall-modelled large-eddy simulations. J. Fluid Mech. 758, 562.CrossRefGoogle Scholar
Borges, R., Carmona, M., Costa, B. & Don, W. S. 2008 An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227 (6), 31913211.CrossRefGoogle Scholar
Bruce, P. J. K., Burton, D. M. F., Titchener, N. A. & Babinsky, H. 2011 Corner effect and separation in transonic channel flows. J. Fluid Mech. 679, 247262.CrossRefGoogle Scholar
Burton, D. M. F. & Babinsky, H. 2012 Corner separation effects for normal shock wave/turbulent boundary layer interactions in rectangular channels. J. Fluid Mech. 707, 287306.CrossRefGoogle Scholar
Carpenter, M. H. & Kennedy, C. A. 1994 Fourth-order 2N-storage Runge–Kutta Schemes. NASA Langley Research Center.Google Scholar
Carpenter, M. H., Nordström, J. & Gottlieb, D. 1998 A stable and conservative interface treatment of arbitrary spatial accuracy. J. Comput. Phys. 365 (98), 341365.Google Scholar
Clemens, N. T. & Narayanaswamy, V. 2014 Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions. Annu. Rev. Fluid Mech. 46 (1), 469492.CrossRefGoogle Scholar
Colliss, S. P., Babinsky, H., Nübler, K. & Lutz, T. 2016 Vortical structures on three-dimensional shock control bumps. AIAA J. 54 (8), 23382350.CrossRefGoogle Scholar
Degrez, G., Boccadoro, C. H. & Wendt, J. F. 1987 The interaction of an oblique shock wave with a laminar boundary layer revisited. An experimental and numerical study. J. Fluid Mech. 177, 247263.CrossRefGoogle Scholar
Délery, J. M. 2001 Robert Legendre and Henri Werlé: toward the elucidation of three-dimensional separation. Annu. Rev. Fluid Mech. 33 (1), 129154.CrossRefGoogle Scholar
Diop, M., Piponniau, S. & Dupont, P. 2019 High resolution LDA measurements in transitional oblique shock wave boundary layer interaction. Exp. Fluids 60 (4), 57.CrossRefGoogle Scholar
Dolling, D. S. 2001 Fifty years of shock-wave/boundary-layer interaction research: what next? AIAA J. 39 (8), 15171531.CrossRefGoogle Scholar
Dwivedi, A., Nichols, J. W., Jovanovic, M. R. & Candler, G. V. 2017 Optimal spatial growth of streaks in oblique shock/boundary layer interaction. In 8th AIAA Theoretical Fluid Mechanics Conference. American Institute of Aeronautics and Astronautics.Google Scholar
Eagle, W. E. & Driscoll, J. F. 2014 Shock wave–boundary layer interactions in rectangular inlets: three-dimensional separation topology and critical points. J. Fluid Mech. 756, 328353.CrossRefGoogle Scholar
Eagle, W. E., Driscoll, J. F. & Benek, J. A. 2011 Experimental investigation of corner flows in rectangular supersonic inlets with 3D shock-boundary layer effects. In 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (January), pp. 111. AIAA Aerospace forum, AIAA 2011-857.Google Scholar
Fiévet, R., Koo, H., Raman, V. & Auslender, A. H. 2017 Numerical investigation of shock-train response to inflow boundary-layer variations. AIAA J. 55 (9), 28882901.CrossRefGoogle Scholar
Gaitonde, D. V. 2015 Progress in shock wave/boundary layer interactions. Prog. Aerosp. Sci. 72, 8099.CrossRefGoogle Scholar
Garnier, E. 2009 Stimulated detached eddy simulation of three-dimensional shock/boundary layer interaction. Shock Waves 19 (6), 479486.CrossRefGoogle Scholar
Gessner, F. B., Ferguson, S. D. & Lo, C. H. 1987 Experiments on supersonic turbulent flow development in a square duct. AIAA J. 25 (5), 690697.CrossRefGoogle Scholar
Giepman, R. H. M., Louman, R., Schrijer, F. F. J. & van Oudheusden, B. W. 2016 Experimental study into the effects of forced transition on a shock-wave/boundary-layer interaction. AIAA J. 54 (4), 13131325.CrossRefGoogle Scholar
Giepman, R. H. M., Schrijer, F. F. J. & van Oudheusden, B. W. 2015 High-resolution PIV measurements of a transitional shock wave–boundary layer interaction. Exp. Fluids 56 (6), 113.CrossRefGoogle Scholar
Giepman, R. H. M., Schrijer, F. F. J. & van Oudheusden, B. W. 2018 A parametric study of laminar and transitional oblique shock wave reflections. J. Fluid Mech. 844, 187215.CrossRefGoogle Scholar
Gross, A. & Fasel, H. F. 2016 Numerical investigation of shock boundary-layer interactions. In 54th AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics.Google Scholar
Grossman, I. J. & Bruce, P. J. 2017 Effect of test article geometry on shock wave–boundary layer interactions in rectangular intakes. In 55th AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics.Google Scholar
Grossman, I. J. & Bruce, P. J. K. 2018 Confinement effects on regular–irregular transition in shock-wave–boundary-layer interactions. J. Fluid Mech. 853, 171204.CrossRefGoogle Scholar
Hakkinen, R. J., Greber, I., Trilling, L. & Abarbanel, S. S.1959 The interaction of an oblique shock wave with a laminar boundary layer. NASA Memorandum 2-18-59W.Google Scholar
Hildebrand, N., Dwivedi, A., Nichols, J. W., Jovanović, M. R. & Candler, G. V. 2018a Simulation and stability analysis of oblique shock-wave/boundary-layer interactions at Mach 5.92. Phys. Rev. Fluids 3 (1), 123.CrossRefGoogle Scholar
Hildebrand, N. J., Nichols, J. W., Candler, G. V. & Jovanovic, M. 2018b Transient growth in oblique shock wave/laminar boundary layer interactions at Mach 5.92. In 2018 Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics.Google Scholar
Jacobs, C. T., Jammy, S. P. & Sandham, N. D. 2017 OpenSBLI: a framework for the automated derivation and parallel execution of finite difference solvers on a range of computer architectures. J. Comput. Sci. 18, 1223.Google Scholar
Johnsen, E., Larsson, J., Bhagatwala, A. V., Cabot, W. H., Moin, P., Olson, B. J., Rawat, P. S., Shankar, S. K., Sjögreen, B., Yee, H. C. et al. 2010 Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves. J. Comput. Phys. 229 (4), 12131237.CrossRefGoogle Scholar
Katzer, E. 1989 On the lengthscales of laminar shock/boundary-layer interaction. J. Fluid Mech. 206 (1989), 477496.CrossRefGoogle Scholar
Lusher, D. J., Jammy, S. P. & Sandham, N. D. 2018 Shock-wave/boundary-layer interactions in the automatic source-code generation framework OpenSBLI. Comput. Fluids 173, 1721.CrossRefGoogle Scholar
Morajkar, R. R. & Gamba, M. 2016 Swept shock corner flow interacions. In 54th AIAA Aerospace Sciences Meeting (January), pp. 113. AIAA Aerospace forum, AIAA 2016-1165.Google Scholar
Perry, A. E. & Chong, M. S. 1987 A description of eddying motions and flow patterns using critical-point concepts. Annu. Rev. Fluid Mech. 19 (1), 125155.CrossRefGoogle Scholar
Perry, A. E. & Hornung, H. 1984 Some aspects of three-dimensional separation. II – Vortex skeletons. Z. Flugwiss. Weltraumforsch. 8, 155160.Google Scholar
Quadros, R. & Bernardini, M. 2018 Numerical investigation of transitional shock-wave/boundary-layer interaction in supersonic regime. AIAA J. 56 (7), 27122724.CrossRefGoogle Scholar
Reguly, I. Z., Mudalige, G. R., Giles, M. B., Curran, D. & McIntosh-Smith, S. 2014 The OPS Domain Specific Abstraction for Multi-block Structured Grid Computations, pp. 5867. IEEE Press.Google Scholar
Sansica, A., Sandham, N. & Hu, Z. 2013 Stability and unsteadiness in a 2D laminar shock-induced separation bubble. In 43rd Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics.Google Scholar
Sansica, A., Sandham, N. D. & Hu, Z. 2016 Instability and low-frequency unsteadiness in a shock-induced laminar separation bubble. J. Fluid Mech. 798, 526.CrossRefGoogle Scholar
Sivasubramanian, J. & Fasel, H. F. 2015 Numerical investigation of shock-induced laminar separation bubble in a Mach 2 boundary layer. In 45th AIAA Fluid Dynamics Conference, vol. 2641, pp. 136. AIAA, AIAA 2015-2641.Google Scholar
Tobak, M. & Peake, D. J. 1982 Topology of three-dimensional separated flows. Annu. Rev. Fluid Mech. 14 (1), 6185.CrossRefGoogle Scholar
Wang, B., Sandham, N. D., Hu, Z. & Liu, W. 2015 Numerical study of oblique shock-wave/boundary-layer interaction considering sidewall effects. J. Fluid Mech. 767, 526561.CrossRefGoogle Scholar
White, F. 2006 Viscous Fluid Flow. McGraw-Hill.Google Scholar
Xiang, X. & Babinsky, H. 2019 Corner effects for oblique shock wave/turbulent boundary layer interactions in rectangular channels. J. Fluid Mech. 862, 10601083.CrossRefGoogle Scholar