Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T19:50:54.904Z Has data issue: false hasContentIssue false

Effect of gravity on the dynamics of non-isothermic ultra-thin two-layer films

Published online by Cambridge University Press:  27 July 2010

ALEXANDER NEPOMNYASHCHY
Affiliation:
Department of Mathematics, Technion – Israel Institute of Technology, 32000 Haifa, Israel Minerva Center for Nonlinear Physics of Complex Systems, Technion – Israel Institute of Technology, 32000 Haifa, Israel
ILYA SIMANOVSKII*
Affiliation:
Department of Mathematics, Technion – Israel Institute of Technology, 32000 Haifa, Israel
*
Email address for correspondence: yuri11@inter.net.il

Abstract

The effect of gravity on the dynamics of non-isothermic ultra-thin two-layer films is studied in this paper. The joint action of disjoining pressure and thermocapillary forces is taken into account. The problem is considered in a long-wave approximation. The linear stability of a quiescent state and thermocapillary flows is investigated. It has been found that the influence of the upper fluid density is significantly stronger than that of the difference of fluid densities. Nonlinear flow regimes are studied by means of numerical simulations. The gravity can lead to the formation of stripes or holes instead of droplets. The two-dimensional wavy patterns are replaced by one-dimensional waves with the fronts inclined or transverse to the direction of the horizontal temperature gradient.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bandyopadhyay, D., Gulabani, R. & Sharma, A. 2005 Instability and dynamics of thin liquid bilayers. Ind. Engng Chem. Res. 44, 1259.Google Scholar
Bandyopadhyay, D. & Sharma, A. 2006 Nonlinear instabilities and pathways of rupture in thin liquid bilayers. J. Chem. Phys. 125, 054711.Google Scholar
Colinet, P., Joannes, L., Iorio, C. S., Haut, B., Bestehorn, M., Lebon, G. & Legros, J. C. 2003 Interfacial turbulence in evaporating liquids: theory and preliminary results of the ITEL-Master 9 sounding rocket experiment. Adv. Space Res. 32, 119.CrossRefGoogle Scholar
Craster, R. V. & Matar, O. K. 2000 Surfactant transport on mucus films. J. Fluid Mech. 425, 235.Google Scholar
Davis, S. H. 1987 Thermocapillary instabilities. Annu. Rev. Fluid Mech. 19, 403.Google Scholar
Demekhin, E. A., Kalliadasis, S. & Velarde, M. G. 2006 Suppressing falling film instabilities by Marangoni forces. Phys. Fluids 18, 042111.Google Scholar
Fisher, L. S. & Golovin, A. A. 2005 Nonlinear stability analysis of a two-layer thin liquid film: dewetting and autophobic behavior. J. Colloid Interface Sci. 291, 515.CrossRefGoogle ScholarPubMed
Haut, B. & Colinet, P. 2005 Surface-tension-driven instabilities of a pure liquid layer evaporating into an inert gas. J. Colloid Interface Sci. 285, 296.Google Scholar
Higgins, A. M. & Jones, R. A. L. 2000 Anisotropic spinodal dewetting as a route to self-assembly of patterned surfaces. Nature 404, 476.Google Scholar
Israelachvili, J. N. 1992 Intermolecular and Surface Forces. Academic Press.Google Scholar
Joo, S. W. & Hsieh, K.-C. 2000 Interfacial instabilities in thin stratified viscous fluids under microgravity. Fluid Dyn. Res. 26, 203.Google Scholar
Lifshitz, E. M. & Pitaevskii, L. P. 1980 Statistical Physics, Part 2. Pergamon.Google Scholar
Lin, Z. Q., Kerle, T., Baker, S. M., Hoagland, D. A., Shaffer, E., Steiner, U. & Russell, T. P. 2001 Electric field induced instabilities at liquid/liquid interfaces. J. Chem. Phys. 114, 2377.CrossRefGoogle Scholar
Lin, Z. Q., Kerle, T., Russell, T. P., Schaffer, E. & Steiner, U. 2002 a Structure formation at the interface of liquid–liquid bilayer in electric field. J. Macromolecules 35, 3971.Google Scholar
Lin, Z. Q., Kerle, T., Russell, T. P., Schaffer, E. & Steiner, U. 2002 b Electric field induced dewetting at polymer/polymer interfaces. J. Macromolecules 35, 6255.CrossRefGoogle Scholar
Matar, O. K., Craster, R. V. & Warner, M. R. E. 2002 Surfactant transport on highly viscous surface films. J. Fluid Mech. 466, 85.CrossRefGoogle Scholar
Merkt, D., Pototsky, A., Bestehorn, M. & Thiele, U. 2005 Long-wave theory of bounded two-layer films with a free liquid-liquid interface: short- and long-time evolution. Phys. Fluids 17, 064104.Google Scholar
Miladinova, S., Slavchev, S., Lebon, G. & Legros, J.-C. 2002 a Long-wave instabilities of non-uniformly heated falling films. J. Fluid Mech. 453, 153.Google Scholar
Miladinova, S., Staykova, D., Lebon, G. & Scheid, B. 2002 b Effect of nonuniform wall heating on the three-dimensional secondary instability of falling films. Acta Mech. 156, 79.CrossRefGoogle Scholar
Nepomnyashchy, A. A. & Simanovskii, I. B. 2006 Decomposition of a two-layer thin liquid film flowing under the action of Marangoni stresses. Phys. Fluids 18, 112101.CrossRefGoogle Scholar
Nepomnyashchy, A. A. & Simanovskii, I. B. 2007 Marangoni instability in ultrathin two-layer films. Phys. Fluids 19, 122103.CrossRefGoogle Scholar
Nepomnyashchy, A. A. & Simanovskii, I. B. 2008 Dynamics of non-isothermic ultra-thin two-layer films. Microgravity Sci. Technol. 20 (3–4), 149.Google Scholar
Nepomnyashchy, A. A. & Simanovskii, I. B. 2009 a Instabilities and ordered patterns in nonisothermal ultrathin bilayer fluid films. Phys. Rev. Lett. 102, 164501.CrossRefGoogle ScholarPubMed
Nepomnyashchy, A. A. & Simanovskii, I. B. 2009 b Dynamics of ultra-thin two-layer films under the action of inclined temperature gradients. J. Fluid Mech. 631, 165.Google Scholar
Nepomnyashchy, A. A., Simanovskii, I. B. & Legros, J. C. 2006 Interfacial Convection in Multilayer Systems. Springer.Google Scholar
Oron, A., Davis, S. H. & Bankoff, S. G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931.CrossRefGoogle Scholar
Pototsky, A., Bestehorn, M., Merkt, D. & Thiele, U. 2004 Alternative pathways of dewetting for a thin liquid two-layer film. Phys. Rev. E 70, 025201.Google Scholar
Pototsky, A., Bestehorn, M., Merkt, D. & Thiele, U. 2005 Morphology changes in the evolution of liquid two-layer films. J. Chem. Phys. 122, 224711.Google Scholar
Pototsky, A., Bestehorn, M., Merkt, D. & Thiele, U. 2006 Evolution of interface patterns of three-dimensional two-layer liquid films. Europhys. Lett. 74, 665.Google Scholar
Sharma, A. 2003 Many paths to dewetting of thin films: anatomy and physiology of surface instability. Eur. Phys. J. E 12, 397.Google Scholar
Sharma, A., Khanna, R. & Reiter, G. 1999 A thin film analog of the corneal mucus layer of the tear film: an enigmatic long range non-classical DLVO interaction in the breakup of thin polymer films. Colloids Surf. B 14, 223.Google Scholar
Sharma, A. & Ruckenstein, E. 1986 An analytical nonlinear theory of thin film rupture and its application to wetting films. J. Colloid Interface Sci. 113, 456.Google Scholar
Shikhmurzaev, Y. D. 2008 Capillary Flows with Forming Interfaces. Chapman & Hall/CRC.Google Scholar
Simanovskii, I. B. & Nepomnyashchy, A. A. 1993 Convective Instabilities in Systems with Interface. Gordon and Breach.Google Scholar
Thiele, U. 2003 Open questions and promising new fields in dewetting. Eur. Phys. J. E 12, 409.CrossRefGoogle ScholarPubMed
Trevelyan, P. M. J., Scheid, B., Ruyer-Quil, C. & Kalliadasis, S. 2007 Heated falling films. J. Fluid Mech. 592, 295.Google Scholar
Williams, M. B. & Davis, S. H. 1982 Nonlinear theory of film rupture. J. Colloid Interface Sci. 90, 220.Google Scholar