Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T19:41:29.060Z Has data issue: false hasContentIssue false

The effect of longitudinal viscosity on the flow at a nozzle throat

Published online by Cambridge University Press:  28 March 2006

M. Sichel
Affiliation:
Department of Aerospace Engineering, University of Michigan, Ann Arbor

Abstract

An inviscid transonic theory appears to be inadequate to describe the flow near the throat of a converging–diverging nozzle during the transition from the symmetrical Taylor (1930) type of flow to the subsonic–supersonic Meyer (1908) flow. A viscous transonic equation taking account of heat conduction and longitudinal viscosity has been developed previously (Cole 1949; Sichel 1963; Szaniawski 1963). An exact, nozzle-type of similarity solution of the viscous transonic equation, similar to the inviscid solution of Tomotika & Tamada (1950), has been found. This solution does provide a description of the gradual transition from the Taylor to the Meyer flow and shows the initial stages in the development of a shock wave downstream of the nozzle throat. The solution provides a viscous, shock-like transition from an inviscid, supersonic, accelerating flow to an inviscid, subsonic, decelerating flow.

Type
Research Article
Copyright
© 1966 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackeret, J., Feldman, J. & Rott, N. 1946 NACA TM, no. 1113.
Coddington, E. A. & Levinson, N. 1955 Theory of Ordinary Differential Equations. New York: McGraw Hill.
Cole, J. 1949 Problems in Transonic flow. Ph.D. Thesis, California Institute of Technology.
Emmons, H. W. 1946 NACA TN, no. 1003.
Görtler, H. 1939 Z. angew. Math. Mech. 19, 32.
Guderley, K. G. 1962 The Theory of Transonic Flow. Reading: Addison Wesley.
Hall, I. M. & Sutton, E. P. 1962 Symposium Transsonicum (ed. K. Oswatitsch). Berlin: Springer.
Hayes, W. D. 1958 Fundamentals of Gas Dynamics, Sec. D. Princeton University Press.
Kopystynski, J. & Szaniawski, A. 1965 Archiwum Mechaniki stosowanej, 17, 453.
Lighthill, M. J. 1956 Surveys in Mechanics (ed. G. K. Batchelor and R. M. Davies). Cambridge University Press.
Ludford, G. S. S. 1951 J. Aeronaut. Sci. 18, 83.
Manwell, A. R. 1958 Proc. Roy. Soc., A 245, 481.
Manwell, A. R. 1963 Arch. Ratl Mech. Anal. 12, 24.
Meyer, T. 1908 Über zweidimensionale Bewegungsvorgänge in einen Gas, das mit Überschallgeschwindigkeit strömt. Ph.D. Dissertation, Göttingen. (See also Carrier, G. 1951 Foundations of High Speed Aerodynamics. New York: Dover.)
Minorsky, N. 1962 Nonlinear Oscillations. Princeton: Van Nostrand.
Oswatitsch, K. & Zierep, J. 1960 Z. angew. Math. Mech. 40 T, 143.
Pearcy, H. H. 1962 Symposium Transsonicum (ed. K. Oswatitsch). Berlin: Springer.
Ryzhov, O. S. & Shefter, G. M. 1964 Prikl. Mat. i Mekh. 28, 99.
Sichel, M. 1963 Phys. Fluids, 6, 653.
Sichel, M. 1965 University of Michigan ORA Rep. no. 05800–1-F.
Szaniawski, A. 1963 Archiwum Mechaniki stosowanej, 15, 904.
Szaniawski, A. 1964a Importance des effects de dissipation en écoulement transsonique. Internat. Council of Aeronaut. Sci. Congress, Paris, paper no. 64–587.Google Scholar
Szaniawski, A. 1964b Archiwum Mechaniki stosowanej, 16, 643.
Taylor, G. I. 1910 Proc. Roy. Soc., A 84, 371.
Taylor, G. I. 1930 ARCR & M, no. 1381. (See also The Scientific Papers of G. I. Taylor (ed. G. K. Batchelor), vol. 3, p. 128. Cambridge University Press.
Tomotika, S. & Tamada, K. 1950 Quart. Appl. Math. 7, 38.
Tomotika, S. & Hasimoto, Z. 1950 J. Math. Phys. 29, 10.
Wood, W. W. 1961 Phys. Fluids, 4, 46.