Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-29T12:40:18.727Z Has data issue: false hasContentIssue false

Effect of temperature gradient on the cross-stream migration of a surfactant-laden droplet in Poiseuille flow

Published online by Cambridge University Press:  27 November 2017

Sayan Das
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, Kharagpur – 721302, India
Shubhadeep Mandal
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, Kharagpur – 721302, India
Suman Chakraborty*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, Kharagpur – 721302, India
*
Email address for correspondence: suman@mech.iitkgp.ernet.in

Abstract

The motion of a viscous droplet in unbounded Poiseuille flow under the combined influence of bulk-insoluble surfactant and linearly varying temperature field aligned in the direction of imposed flow is studied analytically. Neglecting fluid inertia, thermal convection and shape deformation, asymptotic analysis is performed to obtain the velocity of a force-free surfactant-laden droplet. The droplet speed and direction of motion are strongly influenced by the interfacial transport of surfactant, which is governed by surface Péclet number. The present study is focused on the following two limiting situations of surfactant transport: (i) surface-diffusion-dominated surfactant transport considering small surface Péclet number, and (ii) surface-convection-dominated surfactant transport considering high surface Péclet number. Thermocapillary-induced Marangoni stress, the strength of which relative to viscous stress is represented by the thermal Marangoni number, has a strong influence on the distribution of surfactant on the droplet surface. The present study shows that the motion of a surfactant-laden droplet in the combined presence of temperature and imposed Poiseuille flow cannot be obtained by a simple superposition of the following two independent results: migration of a surfactant-free droplet in a temperature gradient, and the motion of a surfactant-laden droplet in a Poiseuille flow. The temperature field not only affects the axial velocity of the droplet, but also has a non-trivial effect on the cross-stream velocity of the droplet in spite of the fact that the temperature gradient is aligned with the Poiseuille flow direction. When the imposed temperature increases in the direction of the Poiseuille flow, the droplet migrates towards the flow centreline. The magnitude of both axial and cross-stream velocity components increases with the thermal Marangoni number. However, when the imposed temperature decreases in the direction of the Poiseuille flow, the magnitude of both axial and cross-stream velocity components may increase or decrease with the thermal Marangoni number. Most interestingly, the droplet moves either towards the flow centreline or away from it. The present study shows a critical value of the thermal Marangoni number beyond which the droplet moves away from the flow centreline which is in sharp contrast to the motion of a surfactant-laden droplet in isothermal flow, for which the droplet always moves towards the flow centreline. Interestingly, we show that the above picture may become significantly altered in the case where the droplet is not a neutrally buoyant one. When the droplet is less dense than the suspending medium, the presence of gravity in the direction of the Poiseuille flow can lead to cross-stream motion of the droplet away from the flow centreline even when the temperature increases in the direction of the Poiseuille flow. These results may bear far-reaching consequences in various emulsification techniques in microfluidic devices, as well as in biomolecule synthesis, vesicle dynamics, single-cell analysis and nanoparticle synthesis.

Type
JFM Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, K., Kerbage, C., Hunt, T. P., Westervelt, R. M., Link, D. R. & Weitz, D. a. 2006 Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices. Appl. Phys. Lett. 88 (2), 24104.Google Scholar
Amini, H., Lee, W. & Di Carlo, D. 2014 Inertial microfluidic physics. Lab on a Chip 14 (15), 27392761.Google Scholar
Balasubramaniam, R. & Subramanian, R. S. 2004 Thermocapillary convection due to a stationary bubble. Phys. Fluids 16 (8), 31313137.CrossRefGoogle Scholar
Bandopadhyay, A., Mandal, S., Kishore, N. K. & Chakraborty, S. 2016 Uniform electric-field-induced lateral migration of a sedimenting drop. J. Fluid Mech. 792, 553589.CrossRefGoogle Scholar
Baret, J.-C. 2012 Surfactants in droplet-based microfluidics. Lab on a Chip 12 (3), 422433.CrossRefGoogle ScholarPubMed
Baroud, C. N., Delville, J. P., Gallaire, F. & Wunenburger, R. 2007 Thermocapillary valve for droplet production and sorting. Phys. Rev. E 75 (4), 46302.Google ScholarPubMed
Baroud, C. N., Gallaire, F. & Dangla, R. 2010 Dynamics of microfluidic droplets. Lab on a Chip 10 (16), 20322045.Google Scholar
Barton, K. D. & Shankar Subramanian, R. 1990 Thermocapillary migration of a liquid drop normal to a plane surface. J. Colloid Interface Sci. 137 (1), 170182.Google Scholar
Barton, K. D. & Subramanian, R. S. 1991 Migration of liquid drops in a vertical temperature gradient-interaction effects near a horizontal surface. J. Colloid Interface Sci. 141 (1), 146156.Google Scholar
Bonner, W. A., Hulett, H. R., Sweet, R. G. & Herzenberg, L. A. 1972 Fluorescence activated cell sorting. Rev. Sci. Instrum. 43 (3), 404409.Google Scholar
Di Carlo, D., Irimia, D., Tompkins, R. G. & Toner, M. 2007 Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc. Natl Acad. Sci. USA 104 (48), 1889218897.Google Scholar
Carpenter, B. & Homsy, G. M. 1985 The effect of surface contamination on thermocapillary flow in a two-dimensional slot. Part 2. Partially contaminated interfaces. J. Fluid Mech. 155, 429439.CrossRefGoogle Scholar
Casadevall i Solvas, X. & deMello, A. 2011 Droplet microfluidics: recent developments and future applications. Chem. Commun. (Camb). 47 (7), 19361942.CrossRefGoogle ScholarPubMed
Chan, P. C.-H. & Leal, L. G. 1979 The motion of a deformable drop in a second-order fluid. J. Fluid Mech. 92 (1), 131170.Google Scholar
Chen, S. H. 1999 Thermocapillary migration of a fluid sphere parallel to an insulated plane. Langmuir 15 (25), 86188626.Google Scholar
Chen, S. H. 2003 Thermocapillary coagulations of a fluid sphere and a gas bubble. Langmuir 19 (11), 45824591.Google Scholar
Chen, X., Xue, C., Zhang, L., Hu, G., Jiang, X. & Sun, J. 2014 Inertial migration of deformable droplets in a microchannel. Phys. Fluids 26 (11), 112003.Google Scholar
Chen, Y. S., Lu, Y. L., Yang, Y. M. & Maa, J. R. 1997 Surfactant effects on the motion of a droplet in thermocapillary migration. Intl J. Multiphase Flow 23 (2), 325335.Google Scholar
Choudhuri, D. & Raja Sekhar, G. P. 2013 Thermocapillary drift on a spherical drop in a viscous fluid. Phys. Fluids 25 (4), 043104.Google Scholar
Das, S., Mandal, S., Som, S. K. & Chakraborty, S. 2017 Migration of a surfactant-laden droplet in non-isothermal Poiseuille flow. Phys. Fluids 29 (1), 12002.Google Scholar
Fåhraeus, R. 1929 The suspension stability of the blood. Phys. Rev. 9, 241274.Google Scholar
Giddings, J. 1993 Field-flow fractionation: analysis of macromolecular, colloidal, and particulate materials. Science 260 (5113), 14561465.Google Scholar
Griggs, A. J., Zinchenko, A. Z. & Davis, R. H. 2007 Low-Reynolds-number motion of a deformable drop between two parallel plane walls. Intl J. Multiphase Flow 33 (2), 182206.Google Scholar
Haber, S. & Hetsroni, G. 1971 The dynamics of a deformable drop suspended in an unbounded Stokes flow. J. Fluid Mech. 49 (2), 257277.Google Scholar
Haber, S. & Hetsroni, G. 1972 Hydrodynamics of a drop submerged in an unbounded arbitrary velocity field in the presence of surfactants. Appl. Sci. Res. 25 (1), 215233.Google Scholar
Hähnel, M., Delitzsch, V. & Eckelmann, H. 1989 The motion of droplets in a vertical temperature gradient. Phys. Fluids A 1 (9), 14601466.CrossRefGoogle Scholar
Haj-Hariri, H., Nadim, A. & Borhan, A. 1990 Effect of inertia on the thermocapillary velocity of a drop. J. Colloid Interface Sci. 140 (1), 277286.Google Scholar
Hanna, J. A. & Vlahovska, P. M. 2010 Surfactant-induced migration of a spherical drop in Stokes flow. Phys. Fluids 22 (1), 013102.Google Scholar
Happel, J. & Brenner, H. 1981 Low Reynolds Number Hydrodynamics. Springer.Google Scholar
Hatch, A. C., Patel, A., Beer, N. R. & Lee, A. P. 2013 Passive droplet sorting using viscoelastic flow focusing. Lab on a Chip 13, 13081315.Google Scholar
Hetsroni, G. & Haber, S. 1970 The flow in and around a droplet or bubble submerged in an unbound arbitrary velocity field. Rheol. Acta 9 (4), 488496.Google Scholar
Homsy, G. & Meiburg, E. 1984 The effect of surface contamination on thermocapillary flow in a two-dimensional slot. J. Fluid Mech. 139, 443459.Google Scholar
Huebner, A., Sharma, S., Srisa-Art, M., Hollfelder, F., Edel, J. B. & Demello, A. J. 2008 Microdroplets: a sea of applications? Lab on a Chip 8 (8), 12441254.Google Scholar
Hur, S. C., Henderson-MacLennan, N. K., McCabe, E. R. B. & Di Carlo, D. 2011 Deformability-based cell classification and enrichment using inertial microfluidics. Lab on a Chip 11 (5), 912920.Google Scholar
Karabelas, A. J. 1977 Vertical distribution of dilute suspensions in turbulent pipe flow. AIChE J. 23 (4), 426434.Google Scholar
Karbalaei, A., Kumar, R. & Cho, H. J. 2016 Thermocapillarity in microfluidics: a review. Micromachines 7 (1), 141.CrossRefGoogle ScholarPubMed
Karnis, A., Goldsmith, H. L. & Mason, S. G. 1966 The flow of suspensions through tubes. Part V. Inertial effects. Can. J. Chem. Engng 44 (4), 181193.Google Scholar
Kaushal, D. & Tomita, Y. 2002 Solids concentration profiles and pressure drop in pipeline flow of multisized particulate slurries. Intl J. Multiphase Flow 28 (10), 16971717.Google Scholar
Kim, H. S. & Subramanian, R. S. 1989a The thermocapillary migration of a droplet with insoluble surfactant. Part II. General case. J. Colloid Interface Sci. 130 (1), 112129.Google Scholar
Kim, H. S. & Subramanian, R. S. 1989b Thermocapillary migration of a droplet with insoluble surfactant. Part I. Surfactant cap. J. Colloid Interface Sci. 127 (2), 417428.Google Scholar
Leal, L. G. 1980 Particle motions in a viscous fluid. Annu. Rev. Fluid Mech. 12 (1), 435476.Google Scholar
Leal, L. G. 2007 Advanced Transport Phenomena. Cambridge University Press.Google Scholar
Link, D. R., Grasland-Mongrain, E., Duri, A., Sarrazin, F., Cheng, Z., Cristobal, G., Marquez, M. & Weitz, D. a. 2006 Electric control of droplets in microfluidic devices. Angew. Chem. Intl Ed. 45 (16), 25562560.Google Scholar
Mandal, S., Bandopadhyay, A. & Chakraborty, S. 2015 Effect of interfacial slip on the cross-stream migration of a drop in an unbounded Poiseuille flow. Phys. Rev. E 92 (2), 23002.Google Scholar
Mandal, S., Bandopadhyay, A. & Chakraborty, S. 2016 Effect of surface charge convection and shape deformation on the dielectrophoretic motion of a liquid drop. Phys. Rev. E 93, 43127.Google ScholarPubMed
Meyyappan, M. & Subramanian, R. S. 1987 Thermocapillary migration of a gas bubble in an arbitrary direction with respect to a plane surface. J. Colloid Interface Sci. 115 (1), 206219.Google Scholar
Miralles, V., Huerre, A., Malloggi, F. & Jullien, M. 2013 A review of heating and temperature control in microfluidic systems: techniques and applications. Diagnostics 3, 3367.Google Scholar
Mortazavi, S. & Tryggvason, G. 2000 A numerical study of the motion of drops in Poiseuille flow. Part 1. Lateral migration of one drop. J. Fluid Mech. 411, 325350.Google Scholar
Mukherjee, S. & Sarkar, K. 2013 Effects of matrix viscoelasticity on the lateral migration of a deformable drop in a wall-bounded shear. J. Fluid Mech. 727, 318345.CrossRefGoogle Scholar
Mukherjee, S. & Sarkar, K. 2014 Lateral migration of a viscoelastic drop in a Newtonian fluid in a shear flow near a wall. Phys. Fluids 26 (10), 103102.Google Scholar
Nadim, A., Haj-Hariri, H. & Borhan, A. 1990 Thermocapillary migration of slightly deformed droplets. Part. Sci. Technol. 8 (3–4), 191198.Google Scholar
Nallani, M. & Subramanian, R. S. 1993 Migration of methanol drops in a vertical temperature gradient in a silicone oil. J. Colloid Interface Sci. 157 (1), 2431.Google Scholar
Pak, O. S., Feng, J. & Stone, H. a. 2014 Viscous Marangoni migration of a drop in a Poiseuille flow at low surface Péclet numbers. J. Fluid Mech. 753, 535552.Google Scholar
Pries, A., Secomb, T. & Gaehtgens, P. 1996 Biophysical aspects of blood flow in the microvasculature. Cardiovasc. Res. 32, 654667.Google Scholar
Robert de Saint Vincent, M., Wunenburger, R. & Delville, J. 2008 Laser switching and sorting for high speed digital microfluidics. Appl. Phys. Lett. 92, 154105.Google Scholar
Sajeesh, P. & Sen, A. K. 2014 Particle separation and sorting in microfluidic devices: a review. Microfluid Nanofluid. 17 (1), 152.Google Scholar
Schwalbe, J. T., Phelan, F. R. Jr, Vlahovska, P. M. & Hudson, S. D. 2011 Interfacial effects on droplet dynamics in Poiseuille flow. Soft Matt. 7 (17), 7797.Google Scholar
Seemann, R., Brinkmann, M., Pfohl, T. & Herminghaus, S. 2012 Droplet based microfluidics. Rep. Prog. Phys. 75 (75), 1660116641.Google Scholar
Sekhar, G. P. R., Sharanya, V. & Rohde, C.2016 Effect of surfactant concentration and interfacial slip on the flow past a viscous drop at low surface Péclet number. arXiv:1609.03410.Google Scholar
Sharanya, V. & Raja Sekhar, G. P. 2015 Thermocapillary migration of a spherical drop in an arbitrary transient Stokes flow. Phys. Fluids 27 (6), 063104.Google Scholar
Shields, C. W., Reyes, C. D. & López, G. P. 2015 Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab on a Chip 15 (5), 12301249.CrossRefGoogle ScholarPubMed
Stan, C. A., Guglielmini, L., Ellerbee, A. K., Caviezel, D., Stone, H. A. & Whitesides, G. M. 2011 Sheathless hydrodynamic positioning of buoyant drops and bubbles inside microchannels. Phys. Rev. E 84 (3), 121.Google ScholarPubMed
Stebe, K. J., Lin, S. Y. & Maldarelli, C. 1991 Remobilizing surfactant retarded fluid particle interfaces. Part 1. Stress-free conditions at the interfaces of micellar solutions of surfactants with fast sorption kinetics. Phys. Fluids A 3 (1991), 320.Google Scholar
Stone, H. A. 1990 A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface. Phys. Fluids A 2 (1), 111112.Google Scholar
Stone, H. A. & Leal, L. G. 1990 The effects of surfactants on drop deformation and breakup. J. Fluid Mech. 220, 161186.CrossRefGoogle Scholar
Stone, H. A., Stroock, A. D. & Ajdari, A. 2004 Engineering flows in small devices. Annu. Rev. Fluid Mech. 36 (1), 381411.Google Scholar
Teh, S.-Y., Lin, R., Hung, L.-H. & Lee, A. P. 2008 Droplet microfluidics. Lab on a Chip 8 (2), 198220.CrossRefGoogle ScholarPubMed
Vlahovska, P. M., Bławzdziewicz, J. & Loewenberg, M. 2009 Small-deformation theory for a surfactant-covered drop in linear flows. J. Fluid Mech. 624, 293.Google Scholar
Vlahovska, P. M., Loewenberg, M. & Blawzdziewicz, J. 2005 Deformation of a surfactant-covered drop in a linear flow. Phys. Fluids 17 (10), 103103.Google Scholar
Wohl, P. R. & Rubinow, S. I. 1974 The transverse force on a drop in an unbounded parabolic flow. J. Fluid Mech. 62 (1), 185207.Google Scholar
Yang, J., Huang, Y., Wang, X.-B., Becker, F. F. & Gascoyne, P. R. C. 1999 Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field-flow fractionation. Anal. Chem. 71 (5), 911918.Google Scholar
Yariv, E. & Shusser, M. 2006 On the paradox of thermocapillary flow about a stationary bubble. Phys. Fluids 18 (7), 072101.Google Scholar
Young, N. O., Goldstein, J. S. & Block, M. J. 1959 The motion of bubbles in a vertical temperature gradient. J. Fluid Mech. 6 (3), 350356.Google Scholar
Zhang, L., Subramanian, R. S. & Balasubramaniam, R. 2001 Motion of a drop in a vertical temperature gradient at small Marangoni number: the critical role of inertia. J. Fluid Mech. 448, 197211.Google Scholar
Zhu, Y. & Fang, Q. 2013 Analytical detection techniques for droplet microfluidics: a review. Anal. Chim. Acta 787, 2435.Google Scholar