Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-13T01:41:55.876Z Has data issue: false hasContentIssue false

The effect of velocity shear on dynamo action due to rotating convection

Published online by Cambridge University Press:  01 February 2013

D. W. Hughes*
Affiliation:
Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK
M. R. E. Proctor
Affiliation:
Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
*
Email address for correspondence: d.w.hughes@leeds.ac.uk

Abstract

Recent numerical simulations of dynamo action resulting from rotating convection have revealed some serious problems in applying the standard picture of mean field electrodynamics at high values of the magnetic Reynolds number, and have thereby underlined the difficulties in large-scale magnetic field generation in this regime. Here we consider kinematic dynamo processes in a rotating convective layer of Boussinesq fluid with the additional influence of a large-scale horizontal velocity shear. Incorporating the shear flow enhances the dynamo growth rate and also leads to the generation of significant magnetic fields on large scales. By the technique of spectral filtering, we analyse the modes in the velocity that are principally responsible for dynamo action, and show that the magnetic field resulting from the full flow relies crucially on a range of scales in the velocity field. Filtering the flow to provide a true separation of scales between the shear and the convective flow also leads to dynamo action; however, the magnetic field in this case has a very different structure from that generated by the full velocity field. We also show that the nature of the dynamo action is broadly similar irrespective of whether the flow in the absence of shear can support dynamo action.

Type
Papers
Copyright
©2013 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brandenburg, A. 2001 The inverse cascade and nonlinear alpha-effect in simulations of isotropic helical hydromagnetic turbulence. Astrophys. J. 550, 824840.Google Scholar
Cattaneo, F. 1999 On the origin of magnetic fields in the quiet photosphere. Astrophys. J. 515, L39–L42.Google Scholar
Cattaneo, F., Emonet, T. & Weiss, N. O. 2003 On the interaction between convection and magnetic fields. Astrophys. J. 588, 11831198.Google Scholar
Cattaneo, F. & Hughes, D. W. 1996 Nonlinear saturation of the turbulent $\alpha $ -effect. Phys. Rev. E 54, 45324535.CrossRefGoogle ScholarPubMed
Cattaneo, F. & Hughes, D. W. 2006 Dynamo action in a rotating convective layer. J. Fluid Mech. 553, 401418.Google Scholar
Cattaneo, F., Hughes, D. W. & Thelen, J.-C. 2002 The nonlinear properties of a large-scale dynamo driven by helical forcing. J. Fluid Mech. 456, 219237.CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Clarendon Press.Google Scholar
Childress, S. & Soward, A. M. 1972 Convection driven hydromagnetic dynamo. Phys. Rev. Lett. 29, 837839.Google Scholar
Cox, S. M. 1998 Rotating convection in a shear flow. Proc. R. Soc. Lond. A 454, 16991717.CrossRefGoogle Scholar
Hathaway, D. H. & Somerville, R. C. J. 1983 Three-dimensional simulation of convection in layers with tilted rotation vectors. J. Fluid Mech. 126, 7589.Google Scholar
Hathaway, D. H. & Somerville, R. C. J. 1986 Nonlinear interactions between convection, rotation and flows with vertical shear. J. Fluid Mech. 164, 91105.CrossRefGoogle Scholar
Hathaway, D. H. & Somerville, R. C. J. 1987 Thermal convection in a rotating shear flow. Geophys. Astrophys. Fluid Dyn. 38, 4368.Google Scholar
Hathaway, D. H., Toomre, J. & Gilman, P. A. 1980 Convective instability when the temperature gradient and rotation vector are oblique to gravity. II. Real fluids with effects of diffusion. Geophys. Astrophys. Fluid Dyn. 15, 737.CrossRefGoogle Scholar
Heinemann, T., McWilliams, J. C. & Schekochhin, A. A. 2011 Large-scale magnetic field generation by randomly forced shearing waves. Phys. Rev. Lett. 107, 255004.Google Scholar
Hughes, D. W. & Cattaneo, F. 2008 The alpha-effect in rotating convection: size matters. J. Fluid Mech. 594, 445461.Google Scholar
Hughes, D. W. & Proctor, M. R. E. 2009 Large-scale dynamo action driven by velocity shear and rotating convection. Phys. Rev. Lett. 102, 044501.Google Scholar
Hughes, D. W. & Proctor, M. R. E. 2010 Turbulent magnetic diffusivity tensor for time-dependent mean fields. Phys. Rev. Lett. 104, 024503.Google Scholar
Hughes, D. W., Proctor, M. R. E. & Cattaneo, F. 2011 The $\alpha $ -effect in rotating convection: a comparison of numerical simulations. Mon. Not. R. Astron. Soc. 414, L45–L49.Google Scholar
Jones, C. A. & Roberts, P. H. 2000 Convection-driven dynamos in a rotating plane layer. J. Fluid Mech. 404, 311343.Google Scholar
Käpylä, P. J., Korpi, M. J. & Brandenburg, A. 2010 The $\alpha $ -effect in rotating convection with sinusoidal shear. Mon. Not. R. Astron. Soc. 402, 14581466.CrossRefGoogle Scholar
Krause, F. & Rädler, K.-H. 1980 Mean-Field Magnetohydrodynamics and Dynamo Theory. Pergamon.Google Scholar
Kropp, M. & Busse, F. H. 1991 Thermal convection in differentially rotating systems. Geophys. Astrophys. Fluid Dyn. 61, 127148.Google Scholar
Matthews, P. & Cox, S. 1997 Linear stability of rotating convection in an imposed shear flow. J. Fluid Mech. 350, 271293.Google Scholar
Moffatt, H. K. 1978 Magnetic Field Generation in Electrically Conducting Fluids. Cambridge University Press.Google Scholar
Obukhov, A. M. 1941 Spectral energy distribution in a turbulent flow. Izv. Akad. Nauk SSSR Geogr. Geofiz. 5, 453466.Google Scholar
Ossendrijver, M., Stix, M., Brandenburg, A. & Rüdiger, G. 2002 Magnetoconvection and dynamo coefficients. II. Field-direction dependent pumping of magnetic field. Astron. Astrophys. 394, 735745.Google Scholar
Ponty, Y., Gilbert, A. D. & Soward, A. M. 2001 Kinematic dynamo action in large magnetic Reynolds number flows driven by shear and convection. J. Fluid Mech. 435, 261287.Google Scholar
Proctor, M. R. E. 2012 Bounds for growth rates for dynamos with shear. J. Fluid Mech. 697, 504510.Google Scholar
Proctor, M. R. E. & Hughes, D. W. 2011 Competing kinematic dynamo mechanisms in rotating convection with shear. In Astrophysical Dynamics: From Stars to Galaxies, Proceedings IAU Symposium No. 271 (ed. Brummell, N. H., Brun, A. S., Miesch, M. & Ponty, Y.), pp. 239246. Cambridge University Press.Google Scholar
Rogachevskii, I. & Kleeorin, N. 2007 Shear-current effect in a turbulent convection with a large-scale shear. Phys. Rev. E 75, 046305.Google Scholar
Rotvig, J. & Jones, C. A. 2002 Rotating convection-driven dynamos at low Ekman number. Phys. Rev. E 66, 056308.Google Scholar
Schrinner, M., Rädler, K.-H., Schmitt, D., Rheinhardt, M. & Christensen, U. R. 2007 Geophys. Astrophys. Fluid Dyn. 101, 81116.CrossRefGoogle Scholar
Soward, A. M. 1974 A convection driven dynamo I. The weak field case. Phil. Trans. R. Soc. Lond. A 275, 611651.Google Scholar
Sridhar, S. & Singh, N. K 2010 The shear dynamo problem for small magnetic Reynolds numbers. J. Fluid Mech. 664, 265285.Google Scholar
St Pierre, M. G. 1993 The strong field branch of the Childress–Soward dynamo. In Theory of Solar and Planetary Dynamos (ed. Proctor, M. R. E., Matthews, P. C. & Rucklidge, A. M.), pp. 295302. Cambridge University Press.Google Scholar
Stellmach, S. & Hansen, U. 2004 Cartesian convection driven dynamos at low Ekman number. Phys. Rev. E 70, 056312.Google Scholar
Tobias, S. M. & Cattaneo, F. 2008 Dynamo action in complex flows: the quick and the fast. J. Fluid Mech. 601, 101122.Google Scholar
Yousef, T. A., Heinemann, T., Schekochihin, A. A., Kleeorin, N., Rogachevskii, I., Iskakov, A. B., Cowley, S. C. & McWilliams, J. C. 2008a Generation of magnetic field by combined action of turbulence and shear. Phys. Rev. Lett. 100, 184501.Google Scholar
Yousef, T. A., Heinemann, T., Rincon, F., Schekochihin, A. A., Kleeorin, N., Rogachevskii, I., Cowley, S. C. & McWilliams, J. C. 2008b Numerical experiments on dynamo action in sheared and rotating turbulence. Astron. Nachr. 329, 737749.Google Scholar
Zhang, P., Gilbert, A. D. & Zhang, K. 2006 Nonlinear dynamo action in rotating convection and shear. J. Fluid Mech. 546, 2549.Google Scholar

Hughes and M. R. E. Proctor supplementary movie

Temporal evolution of $B_x$ at the upper boundary for $U_0 =1000$

Download Hughes and M. R. E. Proctor supplementary movie(Video)
Video 9.1 MB