Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-15T04:27:01.622Z Has data issue: false hasContentIssue false

Effect of vortex line distribution in superfluid plane Poiseuille flow instability

Published online by Cambridge University Press:  27 February 2013

R. Sooraj
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai 600036, India
A. Sameen*
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai 600036, India
*
Email address for correspondence: sameen@ae.iitm.ac.in

Abstract

The hydrodynamic stability of plane Poiseuille flow of superfluid is studied using modal and non-modal analysis. Two modes of instability are predicted, in normal mode stability analysis of the normal fluid, one caused by viscosity similar to the classical mode and another due to mutual friction between superfluid and normal fluid. The mutual friction mode occurs at high wavenumbers, which are stable wavenumbers in classical plane Poiseuille flow. A high superfluid vortex line density alone is not enough to induce instability in normal fluid; a localization of vortex lines is shown to play a major role. The extent of vortex line concentration required to cause instability depends on the density itself. Non-modal instability analysis shows that oblique waves are stronger than streamwise waves, unlike the scenario in classical plane Poiseuille flow.

Type
Rapids
Copyright
©2013 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarts, R. G. K. M. & de Waele, A. T. A. M. 1994 Numerical investigation of the flow properties of He II. Phys. Rev. B 50, 1006910079.Google Scholar
Barenghi, C. F. 2001 Introduction to superfluid vortices and turbulence. In Quantized Vortex Dynamics and Superfluid Turbulence (ed. Donnelly, R. J., Barenghi, C. F. & Vinen, W. F.). Springer.CrossRefGoogle Scholar
Barenghi, C. F. 2010 Laminar, turbulent or doubly turbulent? Physics 3, 60.Google Scholar
Barenghi, C. F., Donnelly, R. J. & Vinen, W. F. 1983 Friction on quantized vortices in Helium II. J. Low Temp. Phys. 52, 189.Google Scholar
Barenghi, C. F. & Jones, C. A. 1988 The stability of the Couette flow of Helium II. J. Fluid Mech. 197, 551569.Google Scholar
Bergström, L. B. 2008 The initial-value problem for three-dimensional disturbances in plane Poiseuille flow of Helium II. J. Fluid Mech. 598, 227244.Google Scholar
Donnelly, R. J. 1991 Quantized Vortices in Helium II, 1st edn. Cambridge University Press.Google Scholar
Donnelly, R. J. & Lamar, M. M. 1988 Flow and stability of Helium II between concentric cylinders. J. Fluid Mech. 186, 163198.Google Scholar
Donnelly, R. J. & Swanson, C. E. 1986 Quantum turbulence. J. Fluid Mech. 173, 387429.Google Scholar
Galantucci, L., Barenghi, C. F., Sciacca, M., Quadrio, M. & Luchini, P. 2011 Turbulent superfluid profiles in a counterflow channel. J. Low Temp. Phys. 162 (3–4), 354360.Google Scholar
Godfrey, S. P., Samuels, D. C. & Barenghi, C. F. 2001 Linear stability of laminar plane Poiseuille flow of Helium II under a non-uniform mutual friction forcing. Phys. Fluids 13 (4), 983.Google Scholar
Guo, W., Cahn, S. B., Nikkel, J. A., Vinen, W. F. & McKinsey, D. N. 2010 Visualization study of counterflow in superfluid ${\text{} }^{4} \mathrm{He} $ using metastable helium molecules. Phys. Rev. Lett. 105 (4), 045301.Google Scholar
de Haas, W. & van Beelen, H. 1976 A synthesis of flow phenomena in helium II. Physica B 83 (2), 129146.Google Scholar
de Haas, W., Hartoog, A., Beelen, H. Van, Ouboter, R. De B. & Taconis, K. W. 1974 Dissipation in the flow of He II. Physica 75 (2), 311319.Google Scholar
Hall, H. E. & Vinen, W. F. 1956a The rotation of liquid Helium II. I. Experiments on the propagation of second sound in uniformly rotating Helium II. Proc. R. Soc. Lond. A 238 (1213), 204214.Google Scholar
Hall, H. E. & Vinen, W. F. 1956b The rotation of liquid Helium II. II. The theory of mutual friction in uniformly rotating Helium II. Proc. R. Soc. Lond. A 238 (1213), 215234.Google Scholar
Landau, L. & Lifshitz, E. M. 1959 Fluid Mechanics, 1st edn. Pergamon.Google Scholar
Melotte, D. J. & Barenghi, C. F. 1998 Trasition to normal fluid turbulence in Helium II. Phys. Rev. Lett. 80, 4181.CrossRefGoogle Scholar
Samuels, D. C. 1992 Velocity matching and poiseuille pipe flow of superfluid helium. Phys. Rev. B 46, 1171411724.Google Scholar
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows. Springer.Google Scholar
Skrbek, L. & Sreenivasan, K. R. 2012 Developed quantum turbulence and its decay. Phys. Fluids 24, 011301.Google Scholar
Sooraj, R & Sameen, A 2011 Instabilities in superfluid plane poiseuille flow. J. Phys.: Conference Series 318 (9), 092032.Google Scholar
Tilley, D. R. & Tilley, J. 2005 Superfluidity and Superconductivity, 1st edn. Overseas Press.Google Scholar
Tough, J. T. 1982 Superfluid Turbulence. In Progress in Low Temperature Physics (ed. Brewer, D. F.), vol. 8, Chap. 3, pp. 133219. Elsevier.Google Scholar
Vinen, W. F. 1957 Mutual friction in a heat current in liquid Helium II. I. Experiments on steady heat currents. Proc. R. Soc. Lond. A 240 (1220), 114127.Google Scholar
Vinen, W. F. 2006 An introduction to quantum tturbulence. J. Low Temp. Phys. 145 (1–4), 7.Google Scholar
Vinen, W. F. & Niemela, J. J. 2002 Quantum turbulence. J. Low Temp. Phys. 128 (5/6), 167.Google Scholar