Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-01T09:06:50.409Z Has data issue: false hasContentIssue false

The effect of weak inertia in rotating high-aspect-ratio vessel bioreactors

Published online by Cambridge University Press:  27 November 2017

Mohit P. Dalwadi*
Affiliation:
Synthetic Biology Research Centre, University of Nottingham, Nottingham NG7 2RD, UK
S. Jonathan Chapman
Affiliation:
Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
James M. Oliver
Affiliation:
Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
Sarah L. Waters
Affiliation:
Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
*
Email address for correspondence: mohit.dalwadi@nottingham.ac.uk

Abstract

One method to grow artificial body tissue is to place a porous scaffold seeded with cells, known as a tissue construct, into a rotating bioreactor filled with a nutrient-rich fluid. The flow within the bioreactor is affected by the movement of the construct relative to the bioreactor which, in turn, is affected by the hydrodynamical and gravitational forces the construct experiences. The construct motion is thus coupled to the flow within the bioreactor. Over the time scale of a few hours, the construct appears to move in a periodic orbit but, over tens of hours, the construct drifts from periodicity. In the biological literature, this effect is often attributed to the change in density of the construct that occurs via tissue growth. In this paper, we show that weak inertia can cause the construct to drift from its periodic orbit over the same time scale as tissue growth. We consider the coupled flow and construct motion problem within a rotating high-aspect-ratio vessel bioreactor. Using an asymptotic analysis, we investigate the case where the Reynolds number is large but the geometry of the bioreactor yields a small reduced Reynolds number, resulting in a weak inertial effect. In particular, to accurately couple the bioreactor and porous flow regions, we extend the nested boundary layer analysis of Dalwadi et al. (J. Fluid Mech., vol. 798, 2016, pp. 88–139) to include moving walls and the thin region between the porous construct and the bioreactor wall. This allows us to derive a closed system of nonlinear ordinary differential equations for the construct trajectory, from which we show that neglecting inertia results in periodic orbits; we solve the inertia-free problem analytically, calculating the periodic orbits in terms of the system parameters. Using a multiple-scale analysis, we then systematically derive a simpler system of nonlinear ordinary differential equations that describe the long-time drift of the construct due to the effect of weak inertia. We investigate the bifurcations of the construct trajectory behaviour, and the limit cycles that appear when the construct is less dense than the surrounding fluid and the rotation rate is large enough. Thus, we are able to predict when the tissue construct will drift towards a stable limit cycle within the bioreactor and when it will drift out until it hits the bioreactor edge.

Type
JFM Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auriault, J.-L. 2009 On the domain of validity of Brinkman’s equation. Trans. Porous Med. 79 (2), 215223.CrossRefGoogle Scholar
Balsa, T. F. 1998 Secondary flow in a Hele-Shaw cell. J. Fluid Mech. 372, 2544.CrossRefGoogle Scholar
Blasius, H. 1908 Grenzschichten in Flüssigkeiten mit kleiner Reibung. Zeit Math. Phys. 56, 137.Google Scholar
Bodoia, J. R. & Osterle, J. F. 1961 Finite difference analysis of plane Poiseuille and Couette flow developments. Appl. Sci. Res. 10 (1), 265276.CrossRefGoogle Scholar
Callegari, A. J. & Friedman, M. B. 1968 An analytical solution of a nonlinear, singular boundary value problem in the theory of viscous fluids. J. Math. Anal. Appl. 21 (3), 510529.CrossRefGoogle Scholar
Callegari, A. & Nachman, A. 1978 Some singular, nonlinear differential equations arising in boundary layer theory. J. Math. Anal. Appl. 64 (1), 96105.CrossRefGoogle Scholar
Carraro, T., Goll, C., Marciniak-Czochra, A. & Mikelić, A. 2015 Effective interface conditions for the forced infiltration of a viscous fluid into a porous medium using homogenization. Comput. Meth. Appl. Mech. Engng 292, 195220.CrossRefGoogle Scholar
Crank, J. 1984 Free and Moving Boundary Problems. Clarendon Press.Google Scholar
Cummings, L. J., Sawyer, N. B. E., Morgan, S. P., Rose, F. R. A. J. & Waters, S. L. 2009 Tracking large solid constructs suspended in a rotating bioreactor: a combined experimental and theoretical study. Biotechnol. Bioengng 104 (6), 12241234.CrossRefGoogle Scholar
Cummings, L. J. & Waters, S. L. 2007 Tissue growth in a rotating bioreactor. Part II: fluid flow and nutrient transport problems. Math. Med. Biol. 24 (2), 169208.CrossRefGoogle Scholar
Dalwadi, M. P.2014 Flow and nutrient transport problems in rotating bioreactor systems. PhD thesis, University of Oxford.Google Scholar
Dalwadi, M. P., Chapman, S. J., Waters, S. L. & Oliver, J. M. 2016 On the boundary layer structure near a highly permeable porous interface. J. Fluid Mech. 798, 88139.CrossRefGoogle Scholar
England, L. S., Gorzelak, M. & Trevors, J. T. 2003 Growth and membrane polarization in Pseudomonas aeruginosa UG2 grown in randomized microgravity in a high aspect ratio vessel. BBA Gen Subjects 1624 (1), 7680.CrossRefGoogle Scholar
Freed, L. E. & Vunjak-Novakovic, G. 1997 Microgravity tissue engineering. In Vitro Cell. Dev. Biol.-Animal 33 (5), 381385.CrossRefGoogle ScholarPubMed
Gerecht-Nir, S., Cohen, S. & Itskovitz-Eldor, J. 2004 Bioreactor cultivation enhances the efficiency of human embryoid body (hEB) formation and differentiation. Biotechnol. Bioengng 86 (5), 493502.CrossRefGoogle ScholarPubMed
Hussaini, M. Y. & Lakin, W. D. 1986 Existence and non-uniqueness of similarity solutions of a boundary layer problem. Q. J. Mech. Appl. Maths 39, 177191.CrossRefGoogle Scholar
Hussaini, M. Y., Lakin, W. D. & Nachman, A. 1987 On similarity solutions of a boundary layer problem with an upstream moving wall. SIAM J. Appl. Maths 47 (4), 699709.CrossRefGoogle Scholar
Ingram, M., Techy, G. B., Saroufeem, R., Yazan, O., Narayan, K. S., Goodwin, T. J. & Spaulding, G. F. 1997 Three-dimensional growth patterns of various human tumor cell lines in simulated microgravity of a NASA bioreactor. In Vitro Cell. & Dev. Biol.-Animal 33 (6), 459466.CrossRefGoogle ScholarPubMed
Kevorkian, J. K. & Cole, J. D. 1996 Multiple Scale and Singular Perturbation Methods. Springer.CrossRefGoogle Scholar
Khademhosseini, A., Vacanti, J. P. & Langer, R. 2009 Progress in tissue engineering. Sci. Am. 300 (5), 6471.CrossRefGoogle ScholarPubMed
Kuzmak, G. E. 1959 Asymptotic solutions of nonlinear second order differential equations with variable coefficients. Z. Angew. Math. Mech. 23 (3), 730744.CrossRefGoogle Scholar
Lanza, R., Langer, R. & Vacanti, J. P. 2011 Principles of Tissue Engineering. Academic Press.Google Scholar
Lappa, M. 2003 Organic tissues in rotating bioreactors: fluid-mechanical aspects, dynamic growth models, and morphological evolution. Biotech. Bioengng 84 (5), 518532.CrossRefGoogle ScholarPubMed
Levy, T. & Sanchez-Palencia, E. 1975 On boundary conditions for fluid flow in porous media. Intl J. Engng Sci. 13 (11), 923940.CrossRefGoogle Scholar
Li, C., Ye, M. & Liu, Z. 2016 On the rotation of a circular porous particle in 2D simple shear flow with fluid inertia. J. Fluid Mech. 808, R3.CrossRefGoogle Scholar
Nabovati, A., Llewellin, E. W. & Sousa, A. C. M. 2009 A general model for the permeability of fibrous porous media based on fluid flow simulations using the lattice Boltzmann method. Composites A 40 (6), 860869.CrossRefGoogle Scholar
Nield, D. A. & Bejan, A. 2006 Convection in Porous Media. Springer.Google Scholar
Nikolaev, N. I., Obradovic, B., Versteeg, H. K., Lemon, G. & Williams, D. J. 2010 A validated model of GAG deposition, cell distribution, and growth of tissue engineered cartilage cultured in a rotating bioreactor. Biotech. Bioengng 105 (4), 842853.CrossRefGoogle Scholar
Pisu, M., Lai, N., Cincotti, A., Concas, A. & Cao, G. 2004 Modeling of engineered cartilage growth in rotating bioreactors. Chem. Engng Sci. 59 (22), 50355040.CrossRefGoogle Scholar
Prandtl, L. 1904 Über Flüssigkeitsbewegung bei sehr kleiner Reibung. In Proc. Third Int. Math. Cong., Heidelberg (ed. Krazer, A.), pp. 484491.Google Scholar
Purcell, E. M. 1977 Life at low Reynolds number. Am. J. Phys. 45 (1), 311.CrossRefGoogle Scholar
Schwarz, R. P. & Anderson, C. D.1998 Gas permeable bioreactor and method of use. US Patent 5,763,279.Google Scholar
Šimáček, P. & Advani, S. G. 1996 Permeability model for a woven fabric. Polym. Compos. 17 (6), 887899.CrossRefGoogle Scholar
Strogatz, S. H. 2014 Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering. Westview Press.Google Scholar
Sucosky, P., Osorio, D. F., Brown, J. B. & Neitzel, G. P. 2004 Fluid mechanics of a spinner-flask bioreactor. Biotech. Bioengng 85 (1), 3446.CrossRefGoogle ScholarPubMed
Thompson, B. W. 1968 Secondary flow in a Hele-Shaw cell. J. Fluid Mech. 31 (02), 379395.CrossRefGoogle Scholar
Töpfer, K. 1912 Bemerkung zu dem Aufsatz von H. Blasius: Grenzschichten in Flüssigkeiten mit kleiner Reibung. Zeit Math. Phys. 60, 397398.Google Scholar
Vunjak-Novakovic, G., Martin, I., Obradovic, B., Treppo, S., Grodzinsky, A. J., Langer, R. & Freed, L. E. 1999 Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J. Orthopaedic Res. 17 (1), 130138.CrossRefGoogle ScholarPubMed
Waters, S. L., Cummings, L. J., Shakesheff, K. M. & Rose, F. R. A. 2006 Tissue growth in a rotating bioreactor. Part I: mechanical stability. Math. Med. Biol. 23 (4).CrossRefGoogle Scholar
Wolf, D. A., Sams, C. F. & Schwarz, R. P.1992 High aspect reactor vessel and method of use. US Patent 5,153,131.Google Scholar
Yang, S., Leong, K.-F., Du, Z. & Chua, C.-K. 2001 The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Engng 7 (6), 679689.CrossRefGoogle ScholarPubMed
Yu, X., Botchwey, E. A., Levine, E. M., Pollack, S. R. & Laurencin, C. T. 2004 Bioreactor-based bone tissue engineering: the influence of dynamic flow on osteoblast phenotypic expression and matrix mineralization. Proc. Natl Acad. Sci. USA 101 (31), 1120311208.CrossRefGoogle ScholarPubMed
Zhang, Z.-Y., Teoh, S. H., Chong, W.-S., Foo, T.-T., Chng, Y.-C., Choolani, M. & Chan, J. 2009 A biaxial rotating bioreactor for the culture of fetal mesenchymal stem cells for bone tissue engineering. Biomaterials 30 (14), 26942704.CrossRefGoogle ScholarPubMed