Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T20:03:07.514Z Has data issue: false hasContentIssue false

Effects of roughness on particle dynamics in turbulent channel flows: a DNS analysis

Published online by Cambridge University Press:  02 January 2014

Barbara Milici
Affiliation:
Facoltà di Ingegneria, Architettura e delle Scienze Motorie, Università degli studi di Enna ‘Kore’, 94100 Enna, Italy
Mauro De Marchis*
Affiliation:
Facoltà di Ingegneria, Architettura e delle Scienze Motorie, Università degli studi di Enna ‘Kore’, 94100 Enna, Italy
Gaetano Sardina
Affiliation:
Facoltà di Ingegneria, Architettura e delle Scienze Motorie, Università degli studi di Enna ‘Kore’, 94100 Enna, Italy
Enrico Napoli
Affiliation:
Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale e dei Materiali, Università degli Studi di Palermo, 90133 Palermo, Italy
*
Email address for correspondence: mauro.demarchis@unikore.it

Abstract

Deposition and resuspension mechanisms in particle-laden turbulent flows are dominated by the coherent structures arising in the wall region. These turbulent structures, which control the turbulent regeneration cycles, are affected by the roughness of the wall. The particle-laden turbulent flow in a channel bounded by irregular two-dimensional rough surfaces is analysed. The behaviour of dilute dispersions of heavy particles is analysed using direct numerical simulations (DNS) to calculate the three-dimensional turbulent flow and Lagrangian tracking to describe the turbophoretic effect associated with two-phase turbulent flows in a complex wall-bounded domain. Turbophoresis is investigated in a quantitative way as a function of the particle inertia. The analysis of the particle statistics, in term of mean particle concentration and probability density function (p.d.f.) of wall-normal particle velocity, shows that the wall roughness produces a completely different scenario compared to the classical smooth wall. The effect of the wall roughness on the particle mass flux is shown for six particle populations having different inertia.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balachandar, S. & Eaton, J. K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.CrossRefGoogle Scholar
Caporaloni, M., Tampieri, F., Trombetti, F. & Vittori, O. 1975 Transfer of particles in nonisotropic air turbulence. J. Atmos. Sci. 32, 565568.Google Scholar
Cerbelli, S., Giusti, A. & Soldati, A. 2001 Ade approach to predicting particle dispersion in wall bounded turbulent flows. Intl J. Multiphase Flow 27, 18611879.Google Scholar
DeMarchis, M., Ciraolo, G., Nasello, C. & Napoli, E. 2012 Wind- and tide-induced currents in the stagnone lagoon (Sicily). Environ. Fluid Mech. 12 (1), 81100.Google Scholar
DeMarchis, M., Freni, G. & Napoli, E. 2013 Modelling of E. coli distribution in coastal areas subjected to combined sewer overflows. Water Sci. Tech. 68 (5), 11231136.Google Scholar
DeMarchis, M. & Napoli, E. 2012 Effects of irregular two-dimensional and three-dimensional surface roughness in turbulent channel flows. Intl J. Heat Fluid Flow 36, 717.Google Scholar
DeMarchis, M., Napoli, E. & Armenio, V. 2010 Turbulence structures over irregular rough surfaces. J. Turbul. 11 (3), 132.Google Scholar
Hong, J., Katz, J. & Schultz, M. P. 2011 Near-wall turbulence statistics and flow structures over three-dimensional roughness in a turbulent channel flow. J. Fluid Mech. 667, 137.Google Scholar
Jimenez, J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173196.Google Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.Google Scholar
Konan, N. A., Kannengieiser, O. & Simonin, O. 2009 Stochastic modelling of the multiple rebound effects for particle-rough wall collisions. Intl J. Multiphase Flow 35, 933945.Google Scholar
Konan, N. A., Simonin, O. & Squires, K. D. 2011 Detached eddy simulations and particle Lagrangian tracking of horizontal rough wall turbulent channel flow. J. Turbul. 12 (22), 121.Google Scholar
Kussin, J. & Sommerfeld, M. 2002 Experimental studies on particle behaviour and turbulence modification in horizontal channel flow with different wall roughness. Exp. Fluids 33, 143159.Google Scholar
Marchioli, C. & Soldati, A. 2002 Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283315.Google Scholar
Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in a non-uniform flow. Phys. Fluids 26, 883889.Google Scholar
Mohanarangam, K., Tian, Z. F. & Tu, J. Y. 2008 Numerical simulation of turbulent gas-particle flow in a 90 bend: Eulerian–Eulerian approach. Comput. Chem. Engng 32, 561571.Google Scholar
Napoli, E., Armenio, V. & DeMarchis, M. 2008 The effect of the slope of irregularly distributed roughness elements on turbulent wall-bounded flows. J. Fluid Mech. 613, 385394.Google Scholar
Narayanan, C., Lakehal, D., Botto, L. & Soldati, A. 2003 Mechanisms of particle deposition in a fully-developed turbulent open channel flow. Phys. Fluids 15, 763775.Google Scholar
Picano, F., Sardina, G. & Casciola, C. M. 2009 Spatial development of particle-laden turbulent pipe flow. Phys. Fluids 21 (9), 2539.Google Scholar
Reeks, M. W. 1983 The transport of discrete particles in inhomogeneous turbulence. J. Aerosol Sci. 14, 729739.Google Scholar
Rouson, D. W. I. & Eaton, J. K. 2001 On the preferential concentration of solid particles in turbulent channel flow. J. Fluid Mech. 428, 149169.Google Scholar
Sardina, G., Schlatter, P., Brandt, L., Picano, F. & Casciola, C. M. 2012a Wall accumulation and spatial localization in particle-laden wall flows. J. Fluid Mech. 699, 5078.Google Scholar
Sardina, G., Schlatter, P., Picano, F., Casciola, C. M., Brandt, L. & Henningson, D. S. 2012b Self-similar transport of inertial particles in a turbulent boundary layer. J. Fluid Mech. 706, 584596.CrossRefGoogle Scholar
Schiller, V. L. & Naumann, A. 1935 Uber die Grundlegenden Berechnungen bei der Schwerkraftaufbereitung. Z. Verein. Deutsch. Ing. 77, 318320.Google Scholar
Soldati, A. & Marchioli, C. 2009 Physics and modelling of turbulent particle deposition and entrainment: Review of a systematic study. Intl J. Multiphase Flow 35, 827839.Google Scholar
Sommerfeld, M. & Huber, N. 1999 Experimental analysis and modelling of particle–wall collisions. Intl J. Multiphase Flow 25, 14571489.Google Scholar
Sommerfeld, M. & Kussin, J. 2004 Wall roughness effects on pneumatic conveying of spherical particles in a narrow horizontal channel. Powder Technol. 142, 180192.Google Scholar
Squires, K. & Simonin, O. 2006 LES-DPS of the effect of wall roughness on dispersed-phase transport in particle-laden turbulent channel flow. Intl J. Heat Fluid Flow 27, 619626.Google Scholar
Toschi, F. & Bodenschatz, E. 2009 Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375404.Google Scholar
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
Tsuji, Y., Morikawa, Y., Tanakaa, T., Nakatsukasa, N. & Nakatani, M. 1987 Numerical simulation of gas–solid two-phase flow in a two-dimensional horizontal channel. Intl J. Multiphase Flow 13, 671684.Google Scholar
Volino, R. J., Schultz, M. P. & Flack, K. A. 2011 Turbulence structure in boundary layers over periodic two- and three-dimensional roughness. J. Fluid Mech. 676, 172190.CrossRefGoogle Scholar