Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T00:22:44.622Z Has data issue: false hasContentIssue false

Electromagnetic field effect on a conducting liquid film flowing down an inclined or vertical plane

Published online by Cambridge University Press:  21 December 2023

S. Dholey*
Affiliation:
Department of Mathematics, M.U.C. Women's College, Burdwan 713 104, India
S. Gorai
Affiliation:
Department of Applied Mathematics, University of Calcutta, Kolkata 700009, India
S. De
Affiliation:
Department of Applied Mathematics, University of Calcutta, Kolkata 700009, India
*
Email address for correspondence: sdholey@gmail.com

Abstract

The effect of magnetic as well as electromagnetic fields on the stability of an electrically conducting viscous liquid film flowing down an inclined plane has been investigated for the full range of inclination angles $\theta$ ($0 < \theta \le 90^{\circ }$) in association with a given value of the Reynolds number $Re$ ($0 < Re \le 100$), and vice versa. A nonlinear evolution equation is derived by using the momentum-integral method, which is valid for both small and large values of $Re$. Use of the normal mode approach on the linearized surface evolution equation gives the stability criterion and the critical value of the wavenumber $k_c$ (for which the imaginary part of the complex frequency $\omega _i^+$ is zero) which conceive the electric parameter $E$, magnetic parameter $M$, Reynolds number $Re$, Weber number $We$ and inclination angle $\theta$. The nonlinear stability analysis based on the second Landau constant $J_2$ helps to demarcate all four possible distinct flow zones (explosive, supercritical, unconditional and subcritical) of this problem. A novel result of this analysis is a simple relationship between the critical values of $k_c$ and $k_j$ (for which $J_2$ is zero) that basically gives the necessary conditions for the existence of the range of $k$ for an explosive unstable zone, which is either one or two accordingly as $k_j >k_c$ or $k_j< k_c$, and the non-existence of an unconditional stable zone is $k_j \le k_c$ depending upon the values of $M$. The analysis confirms the existence of two critical values of $M$, namely, $M_c$ (for which $k_c$ is zero) and $M_j$ (for which $k_j$ is zero). Here, $M_j > M_c$ except for $\theta = 90^{\circ }$; and we have found the existence of all four or two (unconditional and subcritical) or one (subcritical) zone(s) of this flow problem accordingly, as $0 \le M < M_c$ or $M_c \le M < M_j$ and $M > M_j$ or $M = M_j$.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alekseenko, S.V., Nakoryakov, V.E. & Pokusaev, B.G. 1994 Wave Flow of Liquid Films. Begell House.Google Scholar
Benjamin, T.B. 1957 Wave formation in laminar flow down an inclined plane. J. Fluid Mech. 2, 554574.CrossRefGoogle Scholar
Benney, D.J. 1966 Long waves on liquids films. J. Math. Phys. 45, 150155.Google Scholar
Binnie, A.M. 1957 Experiments on the onset of wave formation on a film of water flowing down a vertical plane. J. Fluid Mech. 2, 551553.Google Scholar
Binnie, A.M. 1959 Instability in a slightly inclined water channel. J. Fluid Mech. 5, 561570.Google Scholar
Blum, E., Mayorov, M. & Tsebers, A. 1989 Magnetic Fluids. Zinatne.Google Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Dover Publications.Google Scholar
Chang, H.C. 1989 Onset of nonlinear waves on falling films. Phys. Fluids 1, 13141327.Google Scholar
Conroy, D. & Matar, O.K. 2017 Dynamics and stability of three-dimensional ferrofluid films in a magnetic field. J. Engng Maths 107, 253268.Google Scholar
Dandapat, B.S. & Mukhopadhyay, A. 2003 Finite amplitude long wave instability of a film of conducting fluid flowing down an inclined plane in presence of electromagnetic field. Intl J. Appl. Mech. Engng 8, 379383.Google Scholar
Dholey, S. 2016 Magnetohydrodynamic unsteady separated stagnation-point flow of a viscous fluid over a moving plate. Z. Angew. Math. Mech. 96, 707720.Google Scholar
Dholey, S. 2017 Instabilities of a thin viscoelastic liquid film flowing down an inclined plane in the presence of a uniform electromagnetic field. Rheol. Acta 56, 325340.Google Scholar
Dholey, S. & Gorai, S. 2021 Hydrodynamic instabilities of a viscous liquid film flowing down an inclined or vertical plane. Phys. Fluids 33, 119.Google Scholar
Fulford, G.D. 1964 The flow of liquids in thin films. Adv. Chem. Engng 5, 151236.Google Scholar
Gjevik, B. 1970 Occurrence of finite amplitude surface waves on falling liquid films. Phys. Fluids 13, 19181925.Google Scholar
Glukhikh, V.A., Tananaev, A.V. & Kirilov, I.R. 1987 Magnetohydrodynamics in the Nuclear Energy Systems. Energoatonizdat.Google Scholar
Gonzalez, A. & Castellanos, A. 1996 Nonlinear electrohydrodynamic waves on films falling down an inclined plane. Phy. Rev. E 53, 35733578.Google Scholar
Greenberg, A.B. 1956 The mechanics of film flow on a vertical surface. PhD thesis, Purdue University.Google Scholar
Ishihara, T., Iwagaki, Y. & Ishihara, Y. 1952 On the roll wave-trains appearing in the water flow on a steep slope surface. Mem. Fac. Engng Kyoto Univ. 14, 8391.Google Scholar
Kapitza, P.L. & Kapitza, S.P. 1949 Wave flow of thin layers of viscous fluid. Zh. Eksp. Teor. Fiz. 19, 105120.Google Scholar
Korsunsky, S. 1999 Long waves on a thin layer of conducting fluid flowing down an inclined plane in an electromagnetic field. Eur. J. Mech. (B/Fluids) 18, 295313.Google Scholar
Lee, J.J. & Mei, C.C. 1996 Stationary waves on an inclined sheet of viscous fluid at high Reynolds and moderate Weber numbers. J. Fluid Mech. 307, 191229.Google Scholar
Lin, S.P. 1974 Finite amplitude side-band stability of a viscous film. J. Fluid Mech. 63, 417429.Google Scholar
Liu, J. & Gollub, J.P. 1994 Solitary wave dynamics of film flows. Phys. Fluids 6, 17021712.Google Scholar
Liu, J., Paul, J.D. & Gollub, J.P. 1993 Measurements of the primary instabilities of film flows. J. Fluid Mech. 250, 69101.Google Scholar
Massot, C., Irani, F. & Lightfoot, E.N. 1966 Modified description of wave motion in a falling film. AIChE J. 12, 445455.Google Scholar
Mukhopadhyay, A., Dandapat, B.S. & Mukhopadhyay, A. 2008 Stability of conducting liquid flowing down an inclined plane at moderate Reynolds number in the presence of constant electromagnetic field. Intl J. Non-Linear Mech. 43, 632642.Google Scholar
Papageorgiou, D.T. 2019 Film flows in the presence of electric fields. Annu. Rev. Fluid Mech. 51, 155187.Google Scholar
Prokopiou, T., Cheng, M. & Chang, H.C. 1991 Long waves on inclined films at high Reynolds number. J. Fluid Mech. 222, 665691.Google Scholar
Pumir, A., Manneville, P. & Pomeau, Y. 1983 On solitary waves running down an inclined plane. J. Fluid Mech. 135, 2750.Google Scholar
Rohlfs, W., Cammiade, L.M.F., Rietz, M. & Scheid, B. 2021 On the effect of electrostatic surface forces on dielectric falling films. J. Fluid Mech. 906, A18.Google Scholar
Shercliff, J.A. 1965 A Textbook of Magnetohydrodynamics. Pergamon Press.Google Scholar
Tseluiko, D. & Papageorgiou, D.T. 2006 Wave evolution on electrified falling films. J. Fluid Mech. 556, 361386.Google Scholar
Whitaker, S. & Jones, L.O. 1966 Stability of falling liquid films. Effect of interface and interfacial mass transport. AIChE J. 12, 421431.Google Scholar
Wray, A.W., Matar, O.K. & Papageorgiou, D.T. 2017 Accurate low-order modeling of electrified falling films at moderate Reynolds number. Phys. Rev. Fluids 2, 063701.CrossRefGoogle Scholar
Yih, C.S. 1963 Stability of liquid flow down an inclined plane. Phys. Fluids 6, 321334.Google Scholar