Hostname: page-component-6bb9c88b65-s7dlb Total loading time: 0 Render date: 2025-07-24T20:49:47.383Z Has data issue: false hasContentIssue false

Electromagnetically driven magnetized spherical Couette flow

Published online by Cambridge University Press:  16 July 2025

Fernando Garzón
Affiliation:
Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Temixco, Morelos 62580, México
D.R. Domínguez-Lozoya
Affiliation:
Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Temixco, Morelos 62580, México Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa 80010, México
Aldo Figueroa*
Affiliation:
Secihti-Centro de Investigación en Ciencias-Universidad Autónoma del Estado de Morelos, Av. Universidad No 1001, Col Chamilpa. Cuernavaca, Morelos 62209, México
Raúl A. Ávalos-Zúñiga
Affiliation:
Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Querétaro, Instituto Politécnico Nacional, Querétaro, Querrétaro 76090, México
Michel Rivero
Affiliation:
Instituto de Investigaciones en Materiales, Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán 58190, México
Saúl Piedra
Affiliation:
Secihti-Centro de Ingeniería y Desarrollo Industrial, Querétaro, Querétaro 76270, México
*
Corresponding author: Aldo Figueroa, alfil@uaem.mx

Abstract

The electromagnetically driven magnetised spherical Couette flow is studied experimentally, theoretically and numerically in the laminar regime. The working fluid, Galinstan, is contained in the spherical gap between two concentric spheres at rest. The electromagnetic stirring is primarily generated due to the interaction of a direct current, which is injected through two ring-shaped electrodes located at the equatorial zone of each sphere, and a dipolar magnetic field produced by a permanent magnet located inside the inner sphere. The flows were explored experimentally for a Reynolds number ranging from 450 to 2230 and a Hartmann number of 240. Ultrasound Doppler velocimetry and particle image velocimetry were used to characterise the flow. For low Reynolds numbers, given the symmetry of the problem, a one-dimensional analytic solution is obtained in the equatorial plane from the magnetohydrodynamic equations. The analytical solution reproduces the main characteristics of the flow. In addition, a full three-dimensional numerical model is able to reproduce both the analytical solution and the experimental measurements. To the best knowledge of the authors, this is the first time experimental results of the magnetised spherical Couette flow have been reported with electromagnetic forcing using a liquid metal as the working media.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adams, M.M., Stone, D.R., Zimmerman, D.S. & Lathrop, D.P. 2015 Liquid sodium models of the earth’s core. Prog. Earth Planet. Sci. 2 (1), 29.10.1186/s40645-015-0058-1CrossRefGoogle Scholar
Alotaibi, M.A. & El-Sapa, S. 2024 MHD Couple stress fluid between two concentric spheres with slip regime. Results Engng 21, 101934.CrossRefGoogle Scholar
Aubert, J., Brito, D., Nataf, H.-C., Cardin, P. & Masson, J.-P. 2001 A systematic experimental study of rapidly rotating spherical convection in water and liquid gallium. Phys. Earth Planet. Inter. 128 (1), 5174.10.1016/S0031-9201(01)00277-1CrossRefGoogle Scholar
Brito, D., Alboussière, T., Cardin, P., Gagnière, N., Jault, D., La Rizza, P., Masson, J.-P., Nataf, H.-C. & Schmitt, D. 2011 Zonal shear and super-rotation in a magnetized spherical Couette-flow experiment. Phys. Rev. E 83 (6), 066310.CrossRefGoogle Scholar
Cabanes, S., Schaeffer, N. & Nataf, H.-C. 2014 Turbulence reduces magnetic diffusivity in a liquid sodium experiment. Phys. Rev. Lett. 113 (18), 184501.CrossRefGoogle Scholar
Colgate, S.A. 2006 Dynamo and hydromagnetic liquid metal experiments. Astron. Nachr. 327, 456460.10.1002/asna.200610557CrossRefGoogle Scholar
Cuevas, S., Smolentsev, S. & Abdou, M.A. 2006 On the flow past a magnetic obstacle. J. Fluid Mech. 553, 227252.CrossRefGoogle Scholar
Dormy, E., Cardin, P. & Jault, D. 1998 MHD flow in a slightly differentially rotating spherical shell, with conducting inner core, in a dipolar magnetic field. Earth Planet. Sci. Lett. 160 (1), 1530.10.1016/S0012-821X(98)00078-8CrossRefGoogle Scholar
Figueroa, A., Demiaux, F., Cuevas, S. & Ramos, E. 2009 Electrically driven vortices in a weak dipolar magnetic field in a shallow electrolytic layer. J. Fluid Mech. 641, 245261.10.1017/S0022112009991868CrossRefGoogle Scholar
Figueroa, A., Rivero, M., Núñez, J., Rojas, J.A. & Rivera, I. 2021 Oscillatory flow between concentric spheres driven by an electromagnetic force. J. Fluid Mech. 920, A5.10.1017/jfm.2021.397CrossRefGoogle Scholar
Figueroa, A., Rojas, J.A., Rosales, J. & Vázquez, F. 2016 Electromagnetically driven flow between concentric spheres: experiments and simulations. In Recent Advances in Fluid Dynamics with Environmental Applications, (ed. L.D.G. Jaime Klapp, A.L. Abraham Medina &  R.-C. Gerardo), pp. 253264. Springer International Publishing.CrossRefGoogle Scholar
Figueroa, A., Schaeffer, N., Nataf, H.-C. & Schmitt, D. 2013 Modes and instabilities in magnetized spherical Couette flow. J. Fluid Mech. 716, 445469.CrossRefGoogle Scholar
Futterer, B., Krebs, A., Plesa, A.-C., Zaussinger, F., Hollerbach, R., Breuer, D. & Egbers, C. 2013 Sheet-like and plume-like thermal flow in a spherical convection experiment performed under microgravity. J. Fluid Mech. 735, 647683.10.1017/jfm.2013.507CrossRefGoogle Scholar
Garcia, F. 2023 Magnetically induced gluing bifurcations of three-tori in spherical Couette flows. Phys. Fluids 35 (11), 111704.CrossRefGoogle Scholar
Garcia, F., Giesecke, A. & Stefani, F. 2021 Modulated rotating waves and triadic resonances in spherical fluid systems: the case of magnetized spherical Couette flow. Phys. Fluids 33 (4), 044105.CrossRefGoogle Scholar
Garcia, F., Ogbonna, J., Giesecke, A. & Stefani, F. 2023 High dimensional tori and chaotic and intermittent transients in magnetohydrodynamic Couette flows. Commun. Nonlinear Sci. 118, 107030.10.1016/j.cnsns.2022.107030CrossRefGoogle Scholar
Garcia, F., Seilmayer, M., Giesecke, A. & Stefani, F. 2019 Modulated rotating waves in the magnetised spherical Couette system. J. Nonlinear Sci. 29 (6), 27352759.10.1007/s00332-019-09557-0CrossRefGoogle Scholar
Garcia, F., Seilmayer, M., Giesecke, A. & Stefani, F. 2020 Chaotic wave dynamics in weakly magnetized spherical Couette flows. Chaos: Interdisciplinary J. Nonlinear Sci. 30 (4), 043116.10.1063/1.5140577CrossRefGoogle ScholarPubMed
Garcia, F. & Stefani, F. 2018 Continuation and stability of rotating waves in the magnetized spherical couette system: secondary transitions and multistability. Proc. R. Soc. A. 474, 20180281.10.1098/rspa.2018.0281CrossRefGoogle ScholarPubMed
Glatzmaier, G.A., Coe, R.S., Hongre, L. & Roberts, P.H. 1999 The role of the earth’s mantle in controlling the frequency of geomagnetic reversals. Nature 401 (6756), 885890.10.1038/44776CrossRefGoogle Scholar
Glatzmaier, G.A. & Roberts, P.H. 1996 An anelastic evolutionary geodynamo simulation driven by compositional and thermal convection. Physica D 97 (1–3), 8194.10.1016/0167-2789(96)00100-5CrossRefGoogle Scholar
Griebel, M., Dornseifer, T. & Neunhoeffer, T. 1998 Numerical Simulation in Fluid Dynamics. SIAM.10.1137/1.9780898719703CrossRefGoogle Scholar
Grote, E. & Busse, F.H. 2001 Dynamics of convection and dynamos in rotating spherical fluid shells. Fluid Dyn. Res. 28 (5), 349368.10.1016/S0169-5983(01)00004-1CrossRefGoogle Scholar
Guervilly, C. & Cardin, P. 2010 Numerical simulations of dynamos generated in spherical Couette flows. Geophys. Astrophys. Fluid Dyn. 104 (2–3), 221248.10.1080/03091920903550955CrossRefGoogle Scholar
Guervilly, C. & Cardin, P. 2016 Subcritical convection of liquid metals in a rotating sphere using a quasi-geostrophic model. J. Fluid Mech. 808, 6189.10.1017/jfm.2016.631CrossRefGoogle Scholar
Hart, J.E., Glatzmaier, G.A. & Toomre, J. 1986 Space-laboratory and numerical simulations of thermal convection in a rotating hemispherical shell with radial gravity. J. Fluid Mech. 173, 519544.10.1017/S0022112086001258CrossRefGoogle Scholar
Herrmann, F. & Vorbach, T. 2020 The geodynamo for non-geophysicists. Eur. J. Phys. 41 (4), 045803.CrossRefGoogle Scholar
Hollerbach, R. & Skinner, S. 2001 Instabilities of magnetically induced shear layers and jets, Proc. R. Soc. Lond. A. 457, 785802.10.1098/rspa.2000.0692CrossRefGoogle Scholar
Hollerbach, R., Wei, X., Noir, J. & Jackson, A. 2013 Electromagnetically driven zonal flows in a rapidly rotating spherical shell. J. Fluid Mech. 725, 428445.10.1017/jfm.2013.195CrossRefGoogle Scholar
Kaplan, E.J. 2014 Saturation of nonaxisymmetric instabilities of magnetized spherical Couette flow. Phys. Rev. E 89 (6), 063016.10.1103/PhysRevE.89.063016CrossRefGoogle ScholarPubMed
Kaplan, E.J., Schaeffer, N., Vidal, J. & Cardin, P. 2017 Subcritical thermal convection of liquid metals in a rapidly rotating sphere. Phys. Rev. Lett. 119 (9), 094501.10.1103/PhysRevLett.119.094501CrossRefGoogle Scholar
Kasprzyk, C., Kaplan, E., Seilmayer, M. & Stefani, F. 2017 Transitions in a magnetized quasi-laminar spherical Couette flow. Magnetohydrodynamics 53 (2), 393401.10.22364/mhd.53.2.19CrossRefGoogle Scholar
Kelley, D.H., Triana, S.A., Zimmerman, D.S., Tilgner, A. & Lathrop, D.P. 2007 Inertial waves driven by differential rotation in a planetary geometry. Geophys. Astrophys. Fluid Dyn. 101 (5-6), 469487.10.1080/03091920701561907CrossRefGoogle Scholar
Lara, C.G., Figueroa, A. & Cuevas, S. 2017 Nested dipolar vortices driven by electromagnetic forces in a thin liquid metal layer. Magnetohydrodynamics 53 (1), 97106.10.22364/mhd.53.1.11CrossRefGoogle Scholar
Lathrop, D.P. & Forest, C.B. 2011 Magnetic dynamos in the lab. Phys. Today 64 (7), 4045.10.1063/PT.3.1166CrossRefGoogle Scholar
Lathrop, D.P., Shew, W.L. & Sisan, D.R. 2001 Laboratory experiments on the transition to MHD dynamos. Plasma Phys. Controll. Fusion 43 (12A), A151A160.10.1088/0741-3335/43/12A/311CrossRefGoogle Scholar
Bars, L., Michael, B., Ankit, B., Fabian, L., Daniel, P., Noir, J., Schaeffer, N. & Triana, S.A. 2021 Fluid dynamics experiments for planetary interiors. Surveys Geophys. 43 (1), 229261.10.1007/s10712-021-09681-1CrossRefGoogle ScholarPubMed
Marcotte, F. & Gissinger, C. 2016 Dynamo generated by the centrifugal instability. Phys. Rev. Fluids 1 (6), 063602.10.1103/PhysRevFluids.1.063602CrossRefGoogle Scholar
Marcus, P.S. & Tuckerman, L.S. 1987 a Simulation of flow between concentric rotating spheres. Part 1. Steady states. J. Fluid Mech. 185, 130.10.1017/S0022112087003069CrossRefGoogle Scholar
Marcus, P.S. & Tuckerman, L.S. 1987 b Simulation of flow between concentric rotating spheres. Part 2. Transitions. J. Fluid Mech. 185, 3165.10.1017/S0022112087003070CrossRefGoogle Scholar
Meduri, D.G., Lignières, F. & Jouve, L. 2019 Nonaxisymmetric magnetorotational instability in spherical Couette flow. Phys. Rev. E 100 (1), 013110.10.1103/PhysRevE.100.013110CrossRefGoogle ScholarPubMed
Mizerski, K.A. & Bajer, K. 2007 On the effect of mantle conductivity on the super-rotating jets near the liquid core surface. Phys. Earth Planet. Int. 160 (3–5), 245268.10.1016/j.pepi.2006.11.006CrossRefGoogle Scholar
Nataf, H.C. 2013 Magnetic induction maps in a magnetized spherical couette flow experiment. C. R. Phys.  14 (2-3), 248267.10.1016/j.crhy.2012.12.002CrossRefGoogle Scholar
Nataf, H.C., Alboussière, T., Brito, D., Cardin, P., Gagnière, N., Jault, D., Masson, J.P. & Schmitt, D. 2006 Experimental study of super-rotation in a magnetostrophic spherical Couette flow. Geophys. Astrophys. Fluid Dyn. 100 (4-5), 281298.10.1080/03091920600718426CrossRefGoogle Scholar
Nornberg, M.D., Spence, E.J., Kendrick, R.D., Jacobson, C.M. & Forest, C.B. 2006 a Intermittent Magnetic Field Excitation by a Turbulent Flow of Liquid Sodium. Phys. Rev. Lett. 97 (4), 044503.10.1103/PhysRevLett.97.044503CrossRefGoogle ScholarPubMed
Nornberg, M.D., Spence, E.J., Kendrick, R.D., Jacobson, C.M. & Forest, C.B. 2006 b Measurements of the magnetic field induced by a turbulent flow of liquid metal. Phys. Plasmas 13 (5), 055901.10.1063/1.2173614CrossRefGoogle Scholar
Ogbonna, J., Garcia, F., Gundrum, T., Seilmayer, M. & Stefani, F. 2020 Experimental investigation of the return flow instability in magnetized spherical Couette flows. Phys. Fluids 32 (12), 124119.10.1063/5.0029570CrossRefGoogle Scholar
Olver, F.W.J., Lozier, D.W., Boisvert, R.F. & Clark, C.W. 2010 NIST Handbook of Mathematical Functions. Cambridge University Press.Google Scholar
Piedra, S., Rojas, J., Rivera, I. & Figueroa, A. 2022 Vortex breakdown in time-dependent electromagnetically driven flow between concentric spheres. Phys. Fluids 34 (6), 063603.10.1063/5.0088516CrossRefGoogle Scholar
Proal, D., Domínguez-Lozoya, D.R., Figueroa, A., Rivero, M., Piedra, S. & Núñez, J. 2023 Electromagnetically driven anticyclonic rotation in spherical Couette flow. J. Fluid Mech. 961, A25.10.1017/jfm.2023.183CrossRefGoogle Scholar
Proal, D., Segura, D., Domínguez, R., Rivero, M. & Figueroa, A. 2022 Study of the spherical Couette flow with electromagnetic stirring. Eur. J. Mech. - B/Fluids 92, 4048.10.1016/j.euromechflu.2021.11.002CrossRefGoogle Scholar
Reuter, K., Jenko, F. & Forest, C.B. 2011 Turbulent magnetohydrodynamic dynamo action in a spherically bounded von Kármán flow at small magnetic Prandtl numbers. New J. Phys. 13 (7), 073019.10.1088/1367-2630/13/7/073019CrossRefGoogle Scholar
Roberts, P.H. 1967 Singularities of Hartmann layers. Proc. R. Soc. A 300, 94107.Google Scholar
Roberts, P.H. & Glatzmaier, G.A. 2000 Geodynamo theory and simulations. Rev. Mod. Phys. 72 (4), 10811123.10.1103/RevModPhys.72.1081CrossRefGoogle Scholar
Rojas, R.E., Perevalov, A., Zürner, T. & Lathrop, D.P. 2021 Experimental study of rough spherical Couette flows: Increasing helicity toward a dynamo state. Phys. Rev. Fluids 6 (3), 033801.10.1103/PhysRevFluids.6.033801CrossRefGoogle Scholar
Samsami, F., Kolesnikov, Y. & Thess, A. 2014 Vortex dynamics in the wake of a magnetic obstacle. J. Visual-Japan 17 (3), 245252.10.1007/s12650-014-0204-7CrossRefGoogle Scholar
Schmitt, D. 2010 Magneto-inertial waves in a rotating sphere. Geophys. Astrophys. Fluid Dyn. 104 (2–3), 135151.10.1080/03091920903439746CrossRefGoogle Scholar
Shew, W.L. & Lathrop, D.P. 2005 Liquid sodium model of geophysical core convection. Phys. Earth Planet. Int. 153 (1-3), 136149.10.1016/j.pepi.2005.03.013CrossRefGoogle Scholar
Shew, W.L., Sisan, D.R. & Lathrop, D.P. 2001 Hunting for dynamos: eight different liquid sodium flows. In Dynamo and Dynamics, a Mathematical Challenge (ed. P. Chossat, D. Ambruster & I. Oprea), NATO Science Series, 36, pp. 287296. Dordrecht: Springer.Google Scholar
Sisan, D.R., Mujica, N., Tillotson, W.A., Huang, Y.M., Dorland, W., Hassam, A.B., Antonsen, T.M. & Lathrop, D.P. 2004 Experimental observation and characterization of the magnetorotational instability. Phys. Rev. Lett. 93 (11), 811.10.1103/PhysRevLett.93.114502CrossRefGoogle ScholarPubMed
Soward, A.M. & Dormy, E. 2010 Shear-layers in magnetohydrodynamic spherical Couette flow with conducting walls. J. Fluid Mech. 645, 145185.10.1017/S0022112009992539CrossRefGoogle Scholar
Stefani, F. 2024 Liquid-metal experiments on geophysical and astrophysical phenomena. Nat. Rev. Phys. 6 (7), 409425.10.1038/s42254-024-00724-1CrossRefGoogle Scholar
Stelzer, Z., Cébron, D., Miralles, S., Vantieghem, S., Noir, J., Scarfe, P. & Jackson, A. 2015 a Experimental and numerical study of electrically driven magnetohydrodynamic flow in a modified cylindrical annulus. i. base flow. Phys. Fluids 27 (7), 077101.10.1063/1.4923746CrossRefGoogle Scholar
Stelzer, Z., Miralles, S., Cébron, D., Noir, J., Vantieghem, S. & Jackson, A. 2015 b Experimental and numerical study of electrically driven magnetohydrodynamic flow in a modified cylindrical annulus. ii. instabilities. Phys. Fluids 27 (8), 084108.10.1063/1.4928897CrossRefGoogle Scholar
Thielicke, W. & Stamhuis, E.J. 2014 PIVlab-towards user-friendly, affordable and accurate digital particle image velocimetry in matlab. J. Open. Res. Softw. 2 (1), pe30.10.5334/jors.blCrossRefGoogle Scholar
Travnikov, V., Eckert, K. & Odenbach, S. 2011 Influence of an axial magnetic field on the stability of spherical Couette flows with different gap widths. Acta Mech. 219 (3–4), 255268.10.1007/s00707-011-0452-8CrossRefGoogle Scholar
Watson, G.N. 1995 A Treatise On the Theory of Bessel Functions. Cambridge University Press.Google Scholar
Zhang, B.Y.K.E. 1995 Spherical shell rotating convection in the presence of a toroidal magnetic field. Proc. R. Soc. A 448, 245268.Google Scholar
Zhang, K.-K. & Busse, F.H. 1989 Convection driven magnetohydrodynamic dynamos in rotating spherical shells. Geophys. Astrophys. Fluid Dyn. 49 (1–4), 97116.10.1080/03091928908243466CrossRefGoogle Scholar