Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T13:53:09.572Z Has data issue: false hasContentIssue false

Electro-osmotic flow through a nanopore

Published online by Cambridge University Press:  14 May 2014

M. Mao
Affiliation:
Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA
J. D. Sherwood
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
S. Ghosal*
Affiliation:
Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA Department of Engineering Sciences and Applied Mathematics, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA
*
Email address for correspondence: s-ghosal@u.northwestern.edu

Abstract

Electro-osmotic pumping of fluid through a nanopore that traverses an insulating membrane is considered. The density of surface charge on the membrane is assumed to be uniform and sufficiently low for the Poisson–Boltzmann equation to be linearized. The reciprocal theorem gives the flow rate generated by an applied weak electric field, expressed as an integral over the fluid volume. For a circular hole in a membrane of zero thickness, an analytical result is possible up to quadrature. For a membrane of arbitrary thickness, the full Poisson–Nernst–Planck–Stokes system of equations is solved numerically using a finite volume method. The numerical solution agrees with the standard analytical result for electro-osmotic flux through a long cylindrical pore when the membrane thickness is large compared to the hole diameter. When the membrane thickness is small, the flow rate agrees with that calculated using the reciprocal theorem.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. & Watson, J. D. 1994 Molecular Biology of the Cell. Garland Science, Taylor & Francis.Google Scholar
Chang, H. C. & Yossifon, G. 2009 Understanding electrokinetics at the nanoscale: a perspective. Biomicrofluidics 3 (1), 012001.Google Scholar
Chang, H. C., Yossifon, G. & Demekhin, E. A. 2012 Nanoscale electrokinetics and microvortices: how microhydrodynamics affects nanofluidic ion flux. Annu. Rev. Fluid Mech. 44, 401426.CrossRefGoogle Scholar
van Dorp, S., Keyser, U. F., Dekker, N. H., Dekker, C. & Lemay, S. 2009 Origin of the electrophoretic force on DNA in solid-state nanopores. Nat. Phys. 5 (5), 347351.Google Scholar
Ferziger, J. H. & Perić, M. 2002 Computational Methods for Fluid Dynamics. Springer.CrossRefGoogle Scholar
Gadaleta, A., Sempere, C., Gravelle, S., Siria, A., Fulcrand, R., Ybert, C. & Bocquet, L. 2014 Sub-additive ionic transport across arrays of solid-state nanopores. Phys. Fluids 26 (1), 012005.CrossRefGoogle Scholar
Garaj, S., Hubbard, W., Reina, A., Kong, J., Branton, D. & Golovchenko, J. 2010 Graphene as a subnanometre trans-electrode membrane. Nature 467 (7312), 190193.Google Scholar
Ghosal, S. 2006 Electrophoresis of a polyelectrolyte through a nanopore. Phys. Rev. E 74 (4), 041901.Google Scholar
Ghosal, S. 2007a Effect of salt concentration on the electrophoretic speed of a polyelectrolyte through a nanopore. Phys. Rev. Lett. 98 (23), 238104.Google Scholar
Ghosal, S. 2007b Electrokinetic-flow-induced viscous drag on a tethered DNA inside a nanopore. Phys. Rev. E 76 (6), 061916.Google Scholar
Gu, L., Cheley, S. & Bayley, H. 2003 Electro-osmotic enhancement of the binding of a neutral molecule to a transmembrane pore. Proc. Natl Acad. Sci. USA 100 (26), 1549815503.CrossRefGoogle Scholar
Hall, J. E. 1975 Access resistance of a small circular pore. J. Gen. Physiol. 66, 531532.Google Scholar
Hall, A. R., Scott, A., Rotem, D., Mehta, K., Bayley, H. & Dekker, C. 2010 Hybrid pore formation by directed insertion of $\alpha $ -haemolysin into solid-state nanopores. Nat. Nanotechnol. 5 (12), 874877.Google Scholar
Happel, J. & Brenner, H. 1983 Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media. Martinus Nijhoff Publishing.CrossRefGoogle Scholar
Henry, D. C. 1931 The cataphoresis of suspended particles. Part 1. The equation of cataphoresis. Proc. R. Soc. Lond. A 133 (821), 106129.Google Scholar
Hu, G., Mao, M. & Ghosal, S. 2012 Ion transport through a graphene nanopore. Nanotechnology 23 (39), 395501.Google Scholar
Kasianowicz, J. J., Brandin, E., Branton, D. & Deamer, D. W. 1996 Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. USA 93 (24), 1377013773.CrossRefGoogle ScholarPubMed
Keyser, U. F., Koeleman, B. N., van Dorp, S., Krapf, D., Smeets, R., Lemay, S., Dekker, N. & Dekker, C. 2006 Direct force measurements on DNA in a solid-state nanopore. Nat. Phys. 2 (7), 473477.CrossRefGoogle Scholar
Kirby, B. J. & Hasselbrink, E. F. 2004a Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis 25, 187202.CrossRefGoogle ScholarPubMed
Kirby, B. J. & Hasselbrink, E. F. 2004b Zeta potential of microfluidic substrates: 2. Data for polymers. Electrophoresis 25, 203213.Google Scholar
Künkele, K. P., Heins, S. & Dembowski, M. 1998 The preprotein translocation channel of the outer membrane of mitochondria. Cell 93, 10091019.Google Scholar
Laohakunakorn, N., Ghosal, S., Otto, O., Misiunas, K. & Keyser, U. F. 2013a DNA interactions in crowded nanopores. Nano Lett. 13 (6), 27982802.CrossRefGoogle ScholarPubMed
Laohakunakorn, N., Gollnick, B., Moreno-Herrero, F., Aarts, D., Dullens, R., Ghosal, S. & Keyser, U. F. 2013b A Landau–Squire nanojet. Nano Lett. 13 (11), 51415146.CrossRefGoogle ScholarPubMed
Levine, S., Marriott, J. R., Neale, G. & Epstein, N. 1975 Theory of electrokinetic flow in fine cylindrical capillaries at high zeta-potentials. J. Colloid Interface Sci. 52 (1), 136149.Google Scholar
Li, J., Gershow, M., Stein, D., Brandin, E. & Golovchenko, J. 2003 DNA molecules and configurations in a solid-state nanopore microscope. Nat. Mater. 2 (9), 611615.Google Scholar
Mao, M., Ghosal, S. & Hu, G. 2013 Hydrodynamic flow in the vicinity of a nanopore induced by an applied voltage. Nanotechnology 24 (24), 245202.Google Scholar
Martin, J., Mahlke, K. & Pfanner, N. 1991 Role of an energized inner membrane in mitochondrial protein import: $\delta \psi $ drives the movement of presequences. J. Biol. Chem. 266, 1805118057.CrossRefGoogle ScholarPubMed
MathWorks 2010 MATLAB version 7.10.0 (R2010a). The MathWorks Inc.Google Scholar
Matouschek, A., Pfanner, N. & Voos, W. 2000 Protein unfolding by mitochondria: the Hsp70 import motor. EMBO Rep. 1, 404410.CrossRefGoogle ScholarPubMed
Merchant, C., Healy, K., Wanunu, M., Ray, V., Peterman, N., Bartel, J., Fischbein, M., Venta, K., Luo, Z., Johnson, A. & Drndić, M. 2010 DNA translocation through graphene nanopores. Nano Lett. 10 (8), 29152921.Google Scholar
Morse, P. & Feshbach, H. 1953 Methods of Theoretical Physics. McGraw-Hill.Google Scholar
Murtsovkin, V. A. 1996 Nonlinear flows near polarized disperse particles. Colloid J. 58, 341349.Google Scholar
OpenCFD 2012 OpenFOAM – The Open Source CFD Toolbox: User Guide. 2nd edn. OpenCFD Ltd.Google Scholar
Park, S. Y., Russo, C. J., Branton, D. & Stone, H. A. 2006 Eddies in a bottleneck: an arbitrary Debye length theory for capillary electro-osmosis. J. Colloid Interface Sci. 297 (2), 832839.CrossRefGoogle Scholar
Pfanner, N. & Neupert, W. 1990 The mitochondrial protein import apparatus. Annu. Rev. Biochem. 59, 331353.Google Scholar
Rice, C. L. & Whitehead, R. 1965 Electrokinetic flow in a narrow cylindrical capillary. J. Phys. Chem. 69, 40174024.Google Scholar
Rubinstein, I. & Shtilman, L. 1979 Voltage against current curves of cation exchange membranes. J. Chem. Soc. Faraday Trans. 2: Mol. Chem. Phys. 75, 231246.CrossRefGoogle Scholar
Saville, D. A. 1977 Electrokinetic effects with small particles. Annu. Rev. Fluid Mech. 9, 321337.Google Scholar
Schneider, G. F., Kowalczyk, S., Calado, V., Pandraud, G., Zandbergen, H., Vandersypen, L. & Dekker, C. 2010 DNA translocation through graphene nanopores. Nano Lett. 10 (8), 31633167.Google Scholar
Sherwood, J. D. & Stone, H. A. 1995 Electrophoresis of a thin charged disk. Phys. Fluids 7 (4), 697705.Google Scholar
Siwy, Z. S. 2006 Ion-current rectification in nanopores and nanotubes with broken symmetry. Adv. Funct. Mater. 16 (6), 735746.Google Scholar
Siwy, Z. S. & Fulinsski, A. 2004 A nanodevice for rectification and pumping ions. Am. J. Phys. 72 (5), 567574.Google Scholar
Smeets, R. M. M., Keyser, U. F., Krapf, D., Wu, M. Y., Dekker, N. H. & Dekker, C. 2006 Salt dependence of ion transport and DNA translocation through solid-state nanopores. Nano Lett. 6 (1), 8995.CrossRefGoogle ScholarPubMed
Squires, T. M. & Bazant, M. Z. 2004 Induced-charge electro-osmosis. J. Fluid Mech. 509, 217252.Google Scholar
Storm, A. J., Chen, J. H., Zandbergen, H. W. & Dekker, C. 2005a Translocation of double-strand DNA through a silicon oxide nanopore. Phys. Rev. E 71 (5), 051903.Google Scholar
Storm, A. J., Storm, C., Chen, J. H., Zandbergen, H., Joanny, J. F. & Dekker, C. 2005b Fast DNA translocation through a solid-state nanopore. Nano Lett. 5 (7), 11931197.Google Scholar
Thamida, S. K. & Chang, H. C. 2002 Nonlinear electrokinetic ejection and entrainment due to polarization at nearly insulated wedges. Phys. Fluids 14 (12), 43154328.Google Scholar
Vlassiouk, I. & Siwy, Z. S. 2007 Nanofluidic diode. Nano Lett. 7 (3), 552556.CrossRefGoogle ScholarPubMed
Vlassiouk, I., Smirnov, S. & Siwy, Z. 2008a Nanofluidic ionic diodes: comparison of analytical and numerical solutions. ACS Nano 2 (8), 15891602.Google Scholar
Vlassiouk, I., Smirnov, S. & Siwy, Z. S. 2008b Ionic selectivity of single nanochannels. Nano Lett. 8 (7), 19781985.Google Scholar
Wong, C. T. A. & Muthukumar, M. 2007 Polymer capture by electro-osmotic flow of oppositely charged nanopores. J. Chem. Phys. 126 (16), 164903.Google Scholar
Yossifon, G. & Chang, H. C. 2008 Selection of nonequilibrium overlimiting currents: universal depletion layer formation dynamics and vortex instability. Phys. Rev. Lett. 101 (25), 254501.Google Scholar
Zaltzman, B. & Rubinstein, I. 2007 Electro-osmotic slip and electroconvective instability. J. Fluid Mech. 579, 173226.Google Scholar