Article contents
Electrorheology of a dilute emulsion of surfactant-covered drops
Published online by Cambridge University Press: 24 October 2019
Abstract
We investigate the effects of surfactant coating on a deformable viscous drop under the combined action of shear flow and a uniform electric field. Employing a comprehensive three-dimensional approach, we analyse the non-Newtonian shearing response of the bulk emulsion in the dilute suspension regime. Our results reveal that the location of the peak surfactant accumulation on the drop surface may get shifted from the plane of shear to a plane orthogonal to it, depending on the tilt angle of the applied electric field and strength of the electrical stresses relative to their hydrodynamic counterparts. The surfactant non-uniformity creates significant alterations in the flow perturbation around the drop, triggering modulations in the bulk shear viscosity. Overall, the shear-thinning or shear-thickening behaviour of the emulsion appears to be greatly influenced by the interplay of surface charge convection and Marangoni stresses. We show that the balance between electrical and hydrodynamic stresses renders a vanishing surface tension gradient on the drop surface for some specific shear rates, rendering negligible alterations in the bulk viscosity. This critical condition largely depends on the electrical permittivity and conductivity ratios of the two fluids and orientation of the applied electric field. Also, the physical mechanisms of charge convection and surface deformation play their roles in determining this critical shear rate. As a consequence, we obtain new discriminating factors, involving electrical property ratios and the electric field configuration, which govern the same. Consequently, the surfactant-induced enhancement or attenuation of the bulk emulsion viscosity depends on the electrical conductivity and permittivity ratios. The concerned description of the drop-level flow physics and its connection to the bulk rheology of a dilute emulsion may provide a fundamental understanding of a more complex emulsion system encountered in industrial practice.
JFM classification
- Type
- JFM Papers
- Information
- Copyright
- © 2019 Cambridge University Press
References
- 14
- Cited by