Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T08:15:11.030Z Has data issue: false hasContentIssue false

Elevated low-frequency free-stream vortical disturbances eliminate boundary-layer separation

Published online by Cambridge University Press:  08 June 2021

Dongdong Xu
Affiliation:
Department of Mechanics, Tianjin University, Tianjin300072, PR China Department of Mathematics, Imperial College London, 180 Queen's Gate, LondonSW7 2AZ, UK
Xuesong Wu*
Affiliation:
Department of Mathematics, Imperial College London, 180 Queen's Gate, LondonSW7 2AZ, UK School of Mechanical Engineering, Nantong University, Nantong226019, PR China
*
Email address for correspondence: x.wu@ic.ac.uk

Abstract

A steady two-dimensional boundary layer subject to an adverse streamwise pressure gradient usually separates. In this paper, we investigate how free-stream vortical disturbances (FSVD) of moderate level prevent the separation in such a boundary layer over a plate or concave wall. The focus is on physically realisable FSVD with sufficiently long wavelength (low frequency) as they have the most significant impact on the boundary layer. The FSVD intensity $\epsilon$ is taken to be small but nevertheless strong enough that the streaks or Görtler vortices generated in the boundary layer are fully nonlinear and can alter the mean-flow profile by an order-one amount. The excitation and evolution of streaks and Görtler vortices are governed by the nonlinear unsteady boundary-region equations supplemented by appropriate initial (upstream) and boundary (far-field) conditions, which describe appropriately the action of FSVD on the boundary layer. The flow variables are decomposed into two parts: the steady spanwise-averaged and the unsteady or spanwise-varying components. These two parts are coupled and are computed simultaneously. Numerical results show that the separation is eliminated when the FSVD level exceeds a critical intensity $\epsilon _c$. It is inferred that the strong nonlinear mean-flow distortion associated with the nonlinear streaks or Görtler vortices prevents the separation. The critical FSVD intensity $\epsilon _c$ depends on the streamwise curvature, the pressure gradient and the frequency of FSVD. The value of $\epsilon _c$ decreases significantly with the Görtler number, indicating that concave curvature inhibits separation. A higher $\epsilon _c$ is required to prevent the separation in the case of stronger adverse pressure gradient. Interestingly, unsteady FSVD with low frequencies are found to be more effective than steady ones in suppressing the separation.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alam, M. & Sandham, N.D. 2000 Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattachment. J. Fluid Mech. 410, 128.CrossRefGoogle Scholar
Avanci, M.P., Rodríguez, D. & Alves, L.S. de B. 2019 A geometrical criterion for absolute instability in separated boundary layers. Phys. Fluids 31 (1), 014103.CrossRefGoogle Scholar
Balzer, W. & Fasel, H.F. 2016 Numerical investigation of the role of free-stream turbulence in boundary-layer separation. J. Fluid Mech. 801, 289321.CrossRefGoogle Scholar
Blair, M.F. 1992 Boundary-layer transition in accelerating flows with intense freestream turbulence: Part 1. Disturbances upstream of transition onset. Trans. ASME J. Fluids Engng 114 (3), 313321.CrossRefGoogle Scholar
Carter, J.E. & Wornom, S.F. 1975 Solutions for incompressible separated boundary layers including viscous-inviscid interaction. NASA Tech. Rep. SP-347, pp. 125–150.Google Scholar
Cebeci, T. & Cousteix, J. 2005 Modeling and Computation of Boundary-layer Flows: Laminar, Turbulent and Transitional Boundary Layers in Incompressible and Compressible Flows. Horizons Publishing.Google Scholar
Coull, J.D. & Hodson, H.P. 2011 Unsteady boundary-layer transition in low-pressure turbines. J. Fluid Mech. 681, 370410.CrossRefGoogle Scholar
Diwan, S.S. & Ramesh, O.N. 2009 On the origin of the inflectional instability of a laminar separation bubble. J. Fluid Mech. 629, 263298.CrossRefGoogle Scholar
Dong, M. & Wu, X. 2013 On continuous spectra of the Orr–Sommerfeld/Squire equations and entrainment of free-stream vortical disturbances. J. Fluid Mech. 732, 616659.CrossRefGoogle Scholar
Dovgal, A.V., Kozlov, V.V. & Michalke, A. 1994 Laminar boundary layer separation: instability and associated phenomena. Prog. Aerosp. Sci. 30 (1), 6194.CrossRefGoogle Scholar
Durbin, P.A. & Wu, X. 2007 Transition beneath vortical disturbances. Annu. Rev. Fluid Mech. 39, 107128.CrossRefGoogle Scholar
Embacher, M. & Fasel, H.F. 2014 Direct numerical simulations of laminar separation bubbles: investigation of absolute instability and active flow control of transition to turbulence. J. Fluid Mech. 747, 141185.CrossRefGoogle Scholar
Gallaire, F., Marquillie, M. & Ehrenstein, U. 2007 Three-dimensional transverse instabilities in detached boundary layers. J. Fluid Mech. 571, 221233.CrossRefGoogle Scholar
Gaster, M. 1966 The structure and behaviour of laminar separation bubbles. In Proc. Conf. AGARD, Rhode-Saint-Genese, Belgium, paper no. 4, pp. 813–854.Google Scholar
Goldstein, M.E. 1978 Unsteady vortical and entropic distortions of potential flows round arbitrary obstacles. J. Fluid Mech. 89 (03), 433468.CrossRefGoogle Scholar
Goldstein, M.E. & Durbin, P.A. 1980 The effect of finite turbulence spatial scale on the amplification of turbulence by a contracting stream. J. Fluid Mech. 98 (03), 473508.CrossRefGoogle Scholar
Goldstein, M.E. & Leib, S.J. 1993 Three-dimensional boundary-layer instability and separation induced by small-amplitude streamwise vorticity in the upstream flow. J. Fluid Mech. 246, 2141.CrossRefGoogle Scholar
Goldstein, M.E., Leib, S.J. & Cowley, S.J. 1992 Distortion of a flat-plate boundary layer by free-stream vorticity normal to the plate. J. Fluid Mech. 237, 231260.CrossRefGoogle Scholar
Goldstein, S. 1948 On laminar boundary-layer flow near a position of separation. Q. J. Mech. Appl. Maths 1 (1), 4369.CrossRefGoogle Scholar
Grosch, C.E. & Salwen, H. 1978 The continuous spectrum of the Orr–Sommerfeld equation. Part 1. the spectrum and the eigenfunctions. J. Fluid Mech. 87 (1), 3354.CrossRefGoogle Scholar
Häggmark, C.P., Bakchinov, A.A. & Alfredsson, P.H. 2000 Experiments on a two-dimensional laminar separation bubble. Phil. Trans. R. Soc. Lond. A 358 (1777), 31933205.CrossRefGoogle Scholar
Hall, P. 1988 The nonlinear development of Görtler vortices in growing boundary layers. J. Fluid Mech. 193, 243266.CrossRefGoogle Scholar
Hammond, D.A. & Redekopp, L.G. 1998 Local and global instability properties of separation bubbles. Euro. J. Mech. B/Fluids 17 (2), 145164.CrossRefGoogle Scholar
Herbert, T. 1997 Parabolized stability equations. Annu. Rev. Fluid Mech. 29 (1), 245283.CrossRefGoogle Scholar
Hosseinverdi, S. & Fasel, H.F. 2018 Role of Klebanoff modes in active flow control of separation: direct numerical simulations. J. Fluid Mech. 850, 954983.CrossRefGoogle Scholar
Hosseinverdi, S. & Fasel, H.F. 2019 Numerical investigation of laminar–turbulent transition in laminar separation bubbles: the effect of free-stream turbulence. J. Fluid Mech. 858, 714759.CrossRefGoogle Scholar
Hsiao, C.T. & Pauley, L.L. 1994 Comparison of the triple-deck theory, interactive boundary layer method, and Navier–Stokes computation for marginal separation. Trans. ASME J. Fluids Engng 116, 2228.CrossRefGoogle Scholar
Istvan, M.S., Kurelek, J.W. & Yarusevych, S. 2017 Turbulence intensity effects on laminar separation bubbles formed over an airfoil. AIAA J. 56 (4), 13351347.CrossRefGoogle Scholar
Istvan, M.S. & Yarusevych, S. 2018 Effects of free-stream turbulence intensity on transition in a laminar separation bubble formed over an airfoil. Exp. Fluids 59 (3), 52.CrossRefGoogle Scholar
Jacobs, R.G. & Durbin, P.A. 2001 Simulations of bypass transition. J. Fluid Mech. 428, 185212.CrossRefGoogle Scholar
Jones, L.E., Sandberg, R.D. & Sandham, N.D. 2008 Direct numerical simulations of forced and unforced separation bubbles on an airfoil at incidence. J. Fluid Mech. 602, 175207.CrossRefGoogle Scholar
Kalter, M. & Fernholz, H.H. 2001 The reduction and elimination of a closed separation region by free-stream turbulence. J. Fluid Mech. 446, 271308.CrossRefGoogle Scholar
Karp, M. & Hack, M.J.P. 2020 Optimal suppression of a separation bubble in a laminar boundary layer. J. Fluid Mech. 892, A23.CrossRefGoogle Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.CrossRefGoogle Scholar
Kurelek, J.W., Lambert, A.R. & Yarusevych, S. 2016 Coherent structures in the transition process of a laminar separation bubble. AIAA J. 54 (8), 22952309.CrossRefGoogle Scholar
Leib, S.J., Wundrow, D.W. & Goldstein, M.E. 1999 Effect of free-stream turbulence and other vortical disturbances on a laminar boundary layer. J. Fluid Mech. 380, 169203.CrossRefGoogle Scholar
Malik, M.R. 1990 Numerical methods for hypersonic boundary layer stability. J. Comput. Phys. 86 (2), 376413.CrossRefGoogle Scholar
Marensi, E., Ricco, P. & Wu, X. 2017 Nonlinear unsteady streaks engendered by the interaction of free-stream vorticity with a compressible boundary layer. J. Fluid Mech. 817, 80121.CrossRefGoogle Scholar
Martin, J.A. & Martel, C. 2012 Nonlinear streak computation using boundary region equations. Fluid Dyn. Res. 44 (4), 045503.CrossRefGoogle Scholar
Marxen, O. & Henningson, D.S. 2011 The effect of small-amplitude convective disturbances on the size and bursting of a laminar separation bubble. J. Fluid Mech. 671, 133.CrossRefGoogle Scholar
Marxen, O., Lang, M. & Rist, U. 2012 Discrete linear local eigenmodes in a separating laminar boundary layer. J. Fluid Mech. 711, 126.CrossRefGoogle Scholar
Marxen, O., Lang, M. & Rist, U. 2013 Vortex formation and vortex breakup in a laminar separation bubble. J. Fluid Mech. 728, 5890.CrossRefGoogle Scholar
Marxen, O., Lang, M., Rist, U., Levin, O. & Henningson, D.S. 2009 Mechanisms for spatial steady three-dimensional disturbance growth in a non-parallel and separating boundary layer. J. Fluid Mech. 634, 165189.CrossRefGoogle Scholar
Marxen, O., Lang, M., Rist, U. & Wagner, S. 2003 A combined experimental/numerical study of unsteady phenomena in a laminar separation bubble. Flow Turbul. Combust. 71 (1), 133146.CrossRefGoogle Scholar
Marxen, O. & Rist, U. 2010 Mean flow deformation in a laminar separation bubble: separation and stability characteristics. J. Fluid Mech. 660, 3754.CrossRefGoogle Scholar
Marxen, O., Rist, U. & Wagner, S. 2004 Effect of spanwise-modulated disturbances on transition in a separated boundary layer. AIAA J. 42 (5), 937944.CrossRefGoogle Scholar
McAuliffe, B.R. & Yaras, M.I. 2010 Transition mechanisms in separation bubbles under low-and elevated-freestream turbulence. Trans. ASME J. Turbomach. 132 (1), 011004.CrossRefGoogle Scholar
Michelis, T, Yarusevych, S. & Kotsonis, M. 2017 Response of a laminar separation bubble to impulsive forcing. J. Fluid Mech. 820, 633666.CrossRefGoogle Scholar
Michelis, T., Yarusevych, S. & Kotsonis, M. 2018 On the origin of spanwise vortex deformations in laminar separation bubbles. J. Fluid Mech. 841, 81108.CrossRefGoogle Scholar
Olson, D.A., Katz, A.W., Naguib, A.M., Koochesfahani, M.M., Rizzetta, D.P. & Visbal, M.R. 2013 On the challenges in experimental characterization of flow separation over airfoils at low Reynolds number. Exp. Fluids 54 (2), 1470.CrossRefGoogle Scholar
O'meara, M.M. & Mueller, T.J. 1987 Laminar separation bubble characteristics on an airfoil at low Reynolds numbers. AIAA J. 25 (8), 10331041.CrossRefGoogle Scholar
Owen, P.R. & Klanfer, L. 1953 On the laminar boundary layer separation from the leading edge of a thin aerofoil. Tech. Rep. CP 220. Royal Aircraft Establishment, UK.Google Scholar
Prandtl, L. 1904 Über flussigkeitsbewegung bei sehr kleiner reibung. In Verh. III, Intern. Math. Kongr., Heidelberg, pp. 484–491. Teubner.Google Scholar
Ricco, P., Luo, J. & Wu, X. 2011 Evolution and instability of unsteady nonlinear streaks generated by free-stream vortical disturbances. J. Fluid Mech. 677, 138.CrossRefGoogle Scholar
Rist, U. & Augustin, K. 2006 Control of laminar separation bubbles using instability waves. AIAA J. 44 (10), 22172223.CrossRefGoogle Scholar
Rist, U. & Maucher, U. 2002 Investigations of time-growing instabilities in laminar separation bubbles. Eur. J. Mech. B/Fluids 21 (5), 495509.CrossRefGoogle Scholar
Rodríguez, D., Gennaro, E.M. & Juniper, M.P. 2013 The two classes of primary modal instability in laminar separation bubbles. J. Fluid Mech. 734, R4.CrossRefGoogle Scholar
Rodríguez, D., Gennaro, E.M. & Souza, L.F. 2021 Self-excited primary and secondary instability of laminar separation bubbles. J. Fluid Mech. 906, A13.CrossRefGoogle Scholar
Rodríguez, D. & Theofilis, V. 2010 Structural changes of laminar separation bubbles induced by global linear instability. J. Fluid Mech. 655, 280305.CrossRefGoogle Scholar
Ruban, A.I. 1981 Singular solution of boundary layer equations which can be extended continuously through the point of zero surface friction. Fluid Dyn. 16 (6), 835843.CrossRefGoogle Scholar
Ruban, A.I. 1982 Asymptotic theory of short separation regions on the leading edge of a slender airfoil. Fluid Dyn. 17 (1), 3341.CrossRefGoogle Scholar
Servini, P., Smith, F.T. & Rothmayer, A.P. 2017 The impact of static and dynamic roughness elements on flow separation. J. Fluid Mech. 830, 3562.CrossRefGoogle Scholar
Servini, P., Smith, F.T. & Rothmayer, A.P. 2018 The impact of dynamic roughness elements on marginally separated boundary layers. J. Fluid Mech. 855, 351370.CrossRefGoogle Scholar
Simoni, D., Lengani, D., Ubaldi, M., Zunino, P. & Dellacasagrande, M. 2017 Inspection of the dynamic properties of laminar separation bubbles: free-stream turbulence intensity effects for different Reynolds numbers. Exp. Fluids 58, 66.CrossRefGoogle Scholar
Simoni, D., Ubaldi, M. & Zunino, P. 2014 Experimental investigation of flow instabilities in a laminar separation bubble. J. Therm. Sci. 23 (3), 203214.CrossRefGoogle Scholar
Simoni, D., Ubaldi, M., Zunino, P. & Ampellio, E. 2016 Free-stream turbulence effects on the boundary layer of a high-lift low-pressure-turbine blade. J. Therm. Sci. 25 (3), 195206.CrossRefGoogle Scholar
Stewartson, K. 1970 Is the singularity at separation removable? J. Fluid Mech. 44 (2), 347364.CrossRefGoogle Scholar
Stewartson, K., Smith, F.T. & Kaups, K. 1982 Marginal separation. Stud. Appl. Maths 67 (1), 4561.CrossRefGoogle Scholar
Swearingen, J.D. & Blackwelder, R.F. 1987 The growth and breakdown of streamwise vortices in the presence of a wall. J. Fluid Mech. 182, 255290.CrossRefGoogle Scholar
Sychev, V.V. 1972 Laminar separation. Fluid Dyn. 7 (3), 407417.CrossRefGoogle Scholar
Tani, I. 1964 Low-speed flows involving bubble separations. Prog. Aerosp. Sci. 5, 70103.CrossRefGoogle Scholar
Theofilis, V., Hein, S. & Dallmann, U. 2000 On the origins of unsteadiness and three-dimensionality in a laminar separation bubble. Phil. Trans. R. Soc. Lond. A 358 (1777), 32293246.CrossRefGoogle Scholar
Veldman, A.E.P. 1981 New, quasi-simultaneous method to calculate interacting boundary layers. AIAA J. 19 (1), 7985.CrossRefGoogle Scholar
Watmuff, J.H. 1999 Evolution of a wave packet into vortex loops in a laminar separation bubble. J. Fluid Mech. 397, 119169.CrossRefGoogle Scholar
Wissink, J.G. & Rodi, W. 2006 Direct numerical simulations of transitional flow in turbomachinery. ASME J. Turbomach. 128 (4), 668678.CrossRefGoogle Scholar
Wu, X. & Dong, M. 2016 Entrainment of short-wavelength free-stream vortical disturbances in compressible and incompressible boundary layers. J. Fluid Mech. 797, 683728.CrossRefGoogle Scholar
Wu, X., Zhao, D. & Luo, J. 2011 Excitation of steady and unsteady Görtler vortices by free-stream vortical disturbances. J. Fluid Mech. 682, 66100.CrossRefGoogle Scholar
Wundrow, D.W. & Goldstein, M.E. 2001 Effect on a laminar boundary layer of small-amplitude streamwise vorticity in the upstream flow. J. Fluid Mech. 426, 229262.CrossRefGoogle Scholar
Xu, D. 2020 Receptivity, instability and separation of boundary layer over a curved surface subject to elevated free-stream vortical disturbances. PhD thesis, Tianjin University.Google Scholar
Xu, D., Liu, J. & Wu, X. 2020 Görtler vortices and streaks in boundary layer subject to pressure gradient: excitation by free-stream vortical disturbances, nonlinear evolution and secondary instability. J. Fluid Mech. 900, A15.CrossRefGoogle Scholar
Xu, D., Zhang, Y. & Wu, X. 2017 Nonlinear evolution and secondary instability of steady and unsteady Görtler vortices induced by free-stream vortical disturbances. J. Fluid Mech. 829, 681730.CrossRefGoogle Scholar
Yarusevych, S. & Kotsonis, M. 2017 Steady and transient response of a laminar separation bubble to controlled disturbances. J. Fluid Mech. 813, 955990.CrossRefGoogle Scholar
Zhang, Y., Zaki, T., Sherwin, S. & Wu, X. 2011 Nonlinear response of a laminar boundary layer to isotropic and spanwise localized free-stream turbulence. AIAA Paper 2011-3292.CrossRefGoogle Scholar
Zilli, J., Sutton, D.M. & Lavoie, P. 2017 Effect of freestream turbulence on laminar separation bubbles and flow transition on an SD7003 airfoil at low Reynolds numbers. AIAA Paper 2017-0302.CrossRefGoogle Scholar