Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T09:08:52.797Z Has data issue: false hasContentIssue false

Energy dissipation in body-forced turbulence

Published online by Cambridge University Press:  24 September 2002

CHARLES R. DOERING
Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1109, USA e-mail: doering@umich.edu
CIPRIAN FOIAS
Affiliation:
Department of Mathematics, Indiana University, Bloomington, IN 47405, USA

Abstract

Bounds on the bulk rate of energy dissipation in body-force-driven steady-state turbulence are derived directly from the incompressible Navier–Stokes equations. We consider flows in three spatial dimensions in the absence of boundaries and derive rigorous a priori estimates for the time-averaged energy dissipation rate per unit mass, ε, without making any further assumptions on the flows or turbulent fluctuations. We prove

ε [les ] c1vU2/l2 + c2U3/l,

where v is the kinematic viscosity, U is the root-mean-square (space and time averaged) velocity, and l is the longest length scale in the applied forcing function. The prefactors c1 and c2 depend only on the functional shape of the body force and not on its magnitude or any other length scales in the force, the domain or the flow. We also derive a new lower bound on ε in terms of the magnitude of the driving force F. For large Grashof number Gr = Fl3/v2, we find

c3vFl2 [les ] ε

where λ = √vU2/ε is the Taylor microscale in the flow and the coefficient c3 depends only on the shape of the body force. This estimate is seen to be sharp for particular forcing functions producing steady flows with λ/lO(1) as Gr → 1. We interpret both the upper and lower bounds on ε in terms of the conventional scaling theory of turbulence – where they are seen to be saturated – and discuss them in the context of experiments and direct numerical simulations.

Type
Research Article
Copyright
© 2002 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)