Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-13T04:08:42.352Z Has data issue: false hasContentIssue false

The entropy wave generation in a heated one-dimensional duct

Published online by Cambridge University Press:  28 November 2019

Myunggon Yoon*
Affiliation:
Department of Mechanical Engineering, Gangneung-Wonju National University, Wonju26403, Republic of Korea
*
Email address for correspondence: mgyoon@gwnu.ac.kr

Abstract

This paper presents a theoretical analysis on entropy wave generation in a heated one-dimensional duct, which is a simple thermoacoustic model of a combustor. Following a new observation that an entropy wave is caused by the fluctuations of heat/flow power ratio, the entropy transport equation is analytically solved for a heat input uniformly distributed over an acoustically compact zone. Investigating transfer functions from heat and acoustic fluctuations to the entropy wave, we obtain a deeper understanding on the low-pass filtering property of entropy waves with a closed-form expression of the entropic cutoff frequency. A theoretical explanation on why a thinner flame generally results in a stronger entropy wave is also given. These findings are extended to a general flame distribution from a temporal-spatial filtering interpretation of the entropy transport equation. Furthermore, the thin flame limits of our entropy wave models are compared with a popular entropy model based on the thin flame assumption and jump conditions. A numerical example supporting our theoretical findings is also presented.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chen, L. S., Bomberg, S. & Polifke, W. 2016 Propagation and generation of acoustic and entropy waves across a moving flame front. Combust. Flame 166, 170180.CrossRefGoogle Scholar
Curtain, R. & Morris, K. 2009 Transfer functions of distributed parameter systems: a tutorial. Automatica 45 (5), 11011116.CrossRefGoogle Scholar
Dowling, A. P. 1995 The calculation of thermoacoustic oscillations. J. Sound Vib. 180, 557591.CrossRefGoogle Scholar
Dowling, A. P. & Mahmoudi, Y. 2015 Combustion noise. Proc. Combust. Inst. 35 (1), 65100.CrossRefGoogle Scholar
Dowling, A. P. & Stow, S. R. 2003 Acoustic analysis of gas turbine combustors. J. Propul. Power 19 (5), 751764.CrossRefGoogle Scholar
Fattahi, A., Hosseinalipour, S. M. & Karimi, N. 2017 On the dissipation and dispersion of entropy waves in heat transferring channel flows. Phys. Fluids 29 (8), 087104.CrossRefGoogle Scholar
Giusti, A., Magri, L. & Zedda, M. 2018 Flow inhomogeneities in a realistic aeronautical gas-turbine combustor: formation, evolution, and indirect noise. Trans. ASME: J. Engng Gas Turbines Power 141 (1), 011502011502–11.Google Scholar
Giusti, A., Worth, N. A., Mastorakos, E. & Dowling, A. P. 2017 Experimental and numerical investigation into the propagation of entropy waves. AIAA J. 55 (2), 446458.CrossRefGoogle Scholar
Goh, C. S. & Morgans, A. S. 2013 The influence of entropy waves on the thermoacoustic stability of a model combustor. Combust. Sci. Technol. 185 (2), 249268.CrossRefGoogle Scholar
Karimi, N., Brear, M. & Moase, W. H. 2008 Acoustic and disturbance energy analysis of a flow with heat communication. J. Fluid Mech. 597, 6789.CrossRefGoogle Scholar
Karimi, N., Brear, M. J. & Moase, W. H. 2010 On the interaction of sound with steady heat communicating flows. J. Sound Vib. 329 (22), 47054718.CrossRefGoogle Scholar
Li, J., Yang, D., Luzzato, C. & Morgans, A. S.2017 Open source combustion instability low order simulator (osciloslong). Tech. Rep. Imperial College.Google Scholar
Morgans, A. S. & Annaswamy, A. M. 2008 Adaptive control of combustion instabilities for combustion systems with right-half plane zeros. Combust. Sci. Technol. 180 (9), 15491571.CrossRefGoogle Scholar
Morgans, A. S. & Duran, I. 2016 Entropy noise: a review of theory, progress and challenges. Intl J. Spray Combust. Dyn. 8 (4), 285298.CrossRefGoogle Scholar
Morgans, A. S., Goh, C. S. & Dahan, J. A. 2013 The dissipation and shear dispersion of entropy waves in combustor thermoacoustics. J. Fluid Mech. 733, R2.CrossRefGoogle Scholar
Motheau, E., Nicoud, F. & Poinsot, T. 2014 Mixed acoustic–entropy combustion instabilities in gas turbines. J. Fluid Mech. 749, 542576.CrossRefGoogle Scholar
Nicoud, F. & Wieczorek, K. 2009 About the zero Mach number assumption in the calculation of thermoacoustic instabilities. Intl J. Spray Combust. Dyn. 1 (1), 67111.CrossRefGoogle Scholar
Polifke, W., Paschereit, C. & Döbbeling, K. 2001 Constructive and destructive interference of acoustic and entropy waves in a premixed combustor with a choked exit. Int. J. Acoustics and Vibration 6, 135146.CrossRefGoogle Scholar
Sattelmayer, T. 2002 Influence of the combustor aerodynamics on combustion instabilities from equivalence ratio fluctuations. Trans. ASME: J. Engng Gas Turbines Power 125 (1), 1119.Google Scholar
Wieczorek, K., Sensiau, C., Polifke, W. & Nicoud, F. 2011 Assessing non-normal effects in thermoacoustic systems with mean flow. Phys. Fluids 23 (10), 107103.CrossRefGoogle Scholar
Yu, Y. C., Sisco, J. C., Sankaran, V. & Anderson, W. E. 2010 Effects of mean flow, entropy waves, and boundary conditions on longitudinal combustion instability. Combust. Sci. Technol. 182 (7), 739776.CrossRefGoogle Scholar