Hostname: page-component-6bb9c88b65-s7dlb Total loading time: 0 Render date: 2025-07-22T22:04:11.181Z Has data issue: false hasContentIssue false

Evolution of a family of vortex rings with zero circulation

Published online by Cambridge University Press:  17 July 2025

En-Nong Zhang
Affiliation:
State Key Laboratory for Turbulence and Complex Systems and Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, PR China
Wei-Dong Su*
Affiliation:
State Key Laboratory for Turbulence and Complex Systems and Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, PR China
*
Corresponding author: Wei-Dong Su, swd@pku.edu.cn

Abstract

The existing studies on vortex rings have concentrated on non-zero circulation. However, the cases of zero circulation may also be significantly noteworthy on both theoretical and practical grounds. As the first attempt on this subject, in this paper a family of viscous laminar vortex rings with zero circulation and a moderate ratio of core radius to ring radius is studied using numerical simulations of the incompressible Navier–Stokes equations. This unusual zero circulation is achieved by assigning a special layered vorticity distribution with alternate signs to the vortex core. At the initial moment, the ring is axisymmetric, swirl-free and of a circular cross-section. It is found that the axial symmetry and the non-swirl nature of the vortex ring are preserved during the evolution, and the vortex ring endures a transition from the initial layered structure to a shell structure, then degenerates to an ordinary vortex ring with non-zero circulation at last. Significant vorticity cancellation is observed due to the interactions among the layered structures. A new Reynolds number, based on the absolute value of vorticity, is applied to the zero-circulation vortex rings in the present work. For such vortex rings, cases of both zero and non-zero vortical impulse can happen, unlike the ordinary ones with only non-zero vortical impulse. Additionally, it is found that the vortical impulse can be irrelevant to the ring diameter. The study may shed light on modelling certain real flows characterised by distinct vortex structures or configurations.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Akhmetov, D.G. 2009 Vortex Rings. Springer.10.1007/978-3-642-05016-9CrossRefGoogle Scholar
Bartol, I.K., Krueger, P.S., Stewart, W.J. & Thompson, J.T. 2009 Hydrodynamics of pulsed jetting in juvenile and adult brief squid Lolliguncula brevis: evidence of multiple jet ‘modes’ and their implications for propulsive efficiency. J. Expl Biol 212 (12), 18891903.10.1242/jeb.027771CrossRefGoogle ScholarPubMed
Chu, C.C., Wang, C.T., Chang, C.C., Chang, R.Y. & Chang, W.T. 1995 Head-on collision of two coaxial vortex rings: experiment and computation. J. Fluid Mech. 296, 3971.10.1017/S0022112095002060CrossRefGoogle Scholar
Dabiri, J.O. 2009 Optimal vortex formation as a unifying principle in biological propulsion. Annu. Rev. Fluid Mech. 41 (1), 1733.10.1146/annurev.fluid.010908.165232CrossRefGoogle Scholar
Davidson, P. 2015 Turbulence: An Introduction for Scientists and Engineers. 2nd edn. Oxford University Press.10.1093/acprof:oso/9780198722588.001.0001CrossRefGoogle Scholar
Fish, F.E. & Lauder, G.V. 2006 Passive and active flow control by swimming fishes and mammals. Annu. Rev. Fluid Mech. 38 (1), 193224.10.1146/annurev.fluid.38.050304.092201CrossRefGoogle Scholar
Fraenkel, L.E. 1970 On steady vortex rings with small cross-section in an ideal fluid. Proc. R. Soc. Lond. A 316 (1524), 2962.Google Scholar
Fraenkel, L.E. & Berger, M.S. 1974 A global theory of steady vortex rings in an ideal fluid. Acta Math. 132, 1351.10.1007/BF02392107CrossRefGoogle Scholar
Gavrilov, A.V. 2019 A steady Euler flow with compact support. Geom. Funct. Anal. 29 (1), 190197.10.1007/s00039-019-00476-6CrossRefGoogle Scholar
Gazzola, M., Argentina, M. & Mahadevan, L. 2014 Scaling macroscopic aquatic locomotion. Nat. Phys. 10 (10), 758761.10.1038/nphys3078CrossRefGoogle Scholar
Green, S.I. 1995 Wing tip vortices. In Fluid Vortices (ed. Green, S.I), Fluid Mechanics and Its Applications, vol. 30, pp. 95153. Springer.10.1007/978-94-011-0249-0CrossRefGoogle Scholar
Helmholtz, H. 1858 Über integrale der hydrodynamischen gleichungen, welche den wirbelbewegungen entsprechen. J. Reine Angew. Math. 55, 2555.Google Scholar
Helmholtz, H. 1867 LXIII. On integrals of the hydrodynamical equations, which express vortex-motion. Lond. Edinb. Dublin Phil. Mag. J. Sci. 33 (226), 485512.CrossRefGoogle Scholar
Hoover, A.P., Griffith, B.E. & Miller, L.A. 2017 Quantifying performance in the medusan mechanospace with an actively swimming three-dimensional jellyfish model. J. Fluid Mech. 813, 11121155.10.1017/jfm.2017.3CrossRefGoogle Scholar
Hoover, A.P., Porras, A.J. & Miller, L.A. 2019 Pump or coast: the role of resonance and passive energy recapture in medusan swimming performance. J. Fluid Mech. 863, 10311061.10.1017/jfm.2018.1007CrossRefGoogle Scholar
Howe, M.S. 2003 Theory of Vortex Sound. Cambridge University Press.Google Scholar
Jiu, Q. & Xin, Z. 2009 Smooth approximations and exact solutions of the 3D steady axisymmetric Euler equations. Commun. Math. Phys. 287 (1), 323350.CrossRefGoogle Scholar
Kambe, T. & Minota, T. 1981 Sound radiation from vortex systems. J. Sound Vib. 74 (1), 6172.10.1016/0022-460X(81)90491-0CrossRefGoogle Scholar
Kida, S., Takaoka, M. & Hussain, F. 1991 Collision of two vortex rings. J. Fluid Mech. 230, 583646.10.1017/S0022112091000903CrossRefGoogle Scholar
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.Google Scholar
Lim, T.T. & Nickels, T.B. 1992 Instability and reconnection in the head-on collision of two vortex rings. Nature 357 (6375), 225227.10.1038/357225a0CrossRefGoogle Scholar
Lugt, H.J. 1983 Vortex Flow in Nature and Technology. Wiley.Google Scholar
Norbury, J. 1973 A family of steady vortex rings. J. Fluid Mech. 57 (3), 417431.CrossRefGoogle Scholar
Pao, Y.H. & Goldburg, A. 1969 Clear Air Turbulence and Its Detection. Plenum Press.10.1007/978-1-4899-5615-6CrossRefGoogle Scholar
Saffman, P.G. 1970 The velocity of viscous vortex rings. Stud. Appl. Math. 49 (4), 371380.CrossRefGoogle Scholar
Saffman, P.G. 1978 The number of waves on unstable vortex rings. J. Fluid Mech. 84 (4), 625639.10.1017/S0022112078000385CrossRefGoogle Scholar
Saffman, P.G. 1992 Vortex Dynamics. Cambridge University Press.Google Scholar
Saffman, P.G. & Baker, G.R. 1979 Vortex interactions. Annu. Rev. Fluid Mech. 11 (1), 95122.10.1146/annurev.fl.11.010179.000523CrossRefGoogle Scholar
Schumann, U. & Sharman, R.D. 2015 Aircraft wake-vortex encounter analysis for upper levels. J. Aircraft 52 (4), 12771285.10.2514/1.C032909CrossRefGoogle Scholar
Shariff, K. & Leonard, A. 1992 Vortex rings. Annu. Rev. Fluid Mech. 24 (1), 235279.10.1146/annurev.fl.24.010192.001315CrossRefGoogle Scholar
Shariff, K., Leonard, A. & Ferziger, J.H. 1989 Dynamics of a class of vortex rings, Tech. Rep. 102257. NASA.Google Scholar
Sharman, R. & Lane, T. 2016 Aviation Turbulence: Processes, Detection, Prediction. Springer.10.1007/978-3-319-23630-8CrossRefGoogle Scholar
Sigalotti, L.D.G., Peregrino, F.C. & Ramírez-Rojas, A. 2023 Air Turbulence and Its Methods of Detection. CRC Press.10.1201/9781003090144CrossRefGoogle Scholar
Wei, C., Hu, Q., Li, S.J. & Shi, X.D. 2023 Hydrodynamic interactions and wake dynamics of fish schooling in rectangle and diamond formations. Ocean Engg. 267, 0113258.CrossRefGoogle Scholar
Wu, J.Z., Ma, H.Y. & Zhou, M.D. 2015 Vortical Flows. Springer.10.1007/978-3-662-47061-9CrossRefGoogle Scholar
Wu, J.Z., Xiong, A.K. & Yang, Y.T. 2005 Axial stretching and vortex definition. Phys. Fluids 17 (3), 038108.10.1063/1.1863284CrossRefGoogle Scholar
Wu, L.X. 1993 Steady free vortex rings in an inviscid fluid [in Chinese]. Chin. J. Theor. Appl. Mech. 25, 529536.Google Scholar
Yoshida, Z. & Giga, Y. 1990 Remarks on spectra of operator rot. Math. Z. 204 (1), 235245.10.1007/BF02570870CrossRefGoogle Scholar
Yoshimura, R., Ito, J., Schittenhelm, P.A., Suzuki, K., Yakeno, A. & Obayashi, S. 2023 Clear air turbulence resolved by numerical weather prediction model validated by onboard and virtual flight data. Geophys. Res. Lett. 50 (12), e2022GL101286.10.1029/2022GL101286CrossRefGoogle Scholar