Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T12:08:42.322Z Has data issue: false hasContentIssue false

Experimental investigation of flow behind a cube for moderate Reynolds numbers

Published online by Cambridge University Press:  30 May 2014

L. Klotz
Affiliation:
Physique et Mécanique des Milieux Hétérogènes - PMMH - (UMR 7636, ESPCI - CNRS - UPMC - UPD) Paris 75005, France Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Nowowiejska 24, 00-665 Warsaw, Poland
S. Goujon-Durand
Affiliation:
Physique et Mécanique des Milieux Hétérogènes - PMMH - (UMR 7636, ESPCI - CNRS - UPMC - UPD) Paris 75005, France
J. Rokicki
Affiliation:
Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Nowowiejska 24, 00-665 Warsaw, Poland
J. E. Wesfreid*
Affiliation:
Physique et Mécanique des Milieux Hétérogènes - PMMH - (UMR 7636, ESPCI - CNRS - UPMC - UPD) Paris 75005, France
*
Email address for correspondence: wesfreid@pmmh.espci.fr

Abstract

The wake behind a cube with a face normal to the flow was investigated experimentally in a water tunnel using laser induced fluorescence (LIF) visualisation and particle image velocimetry (PIV) techniques. Measurements were carried out for moderate Reynolds numbers between 100 and 400 and in this range a sequence of two flow bifurcations was confirmed. Values for both onsets were determined in the framework of Landau’s instability model. The measured longitudinal vorticity was separated into three components corresponding to each of the identified regimes. It was shown that the vorticity associated with a basic flow regime originates from corners of the bluff body, in contrast to the two other contributions which are related to instability effects. The present experimental results are compared with numerical simulation carried out earlier by Saha (Phys. Fluids, vol. 16, 2004, pp. 1630–1646).

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achenbach, E. 1974 Vortex shedding from spheres. J. Fluid Mech. 62, 209221.Google Scholar
Auguste, F., Fabre, D. & Magnaudet, J. 2010 Bifurcations in the wake of a thick circular disk. Theor. Comput. Fluid Dyn. 24, 305313.Google Scholar
Bagchi, P. & Balachandar, S. 2004 Response of the wake of an isolated particle to an isotropic turbulent flow. J. Fluid Mech. 518, 95123.Google Scholar
Bobinski, T., Goujon-Durand, S. & Wesfreid, J. E. 2014 Instabilities in the wake of a circular disk. Phys. Rev. E 89, 053021; doi: 10.1103/PhysRevE.89.053021.Google Scholar
Bohorquez, P. & Parras, L. 2013 Three-dimensional numerical simulation of the wake flow of an afterbody at subsonic speeds. Theor. Comput. Fluid Dyn. 27 (1–2), 201218.Google Scholar
Bouchet, G., Mebarek, M. & Dǔsek, J. 2006 Hydrodynamics forces acting on a rigid fixed sphere in early transitional regimes. Eur. J. Mech. (B/Fluids) 25, 321336.Google Scholar
Brucker, C. 2001 Spatio-temporal reconstruction of vortex dynamics in axisymmetric wakes. J. Fluids Struct. 15 (3–4), 543554.Google Scholar
El Khoury, G. K., Andersson, H. I. & Pettersen, B. 2012 Wakes behind a prolate spheroid in crossflow. J. Fluid Mech. 701, 98136.Google Scholar
Fabre, D., Auguste, F. & Magnaudet, J. 2008 Bifurcations and symmetry breaking in the wake of axisymmetric bodies. Phys. Fluids 20, 051702.Google Scholar
Goujon-Durand, S., Jenffer, P. & Wesfreid, J. E. 1994 Downstream evolution of the Bénard-von Kármán instability. Phys. Rev. E 50 (1), 308313.Google Scholar
Gumowski, K., Miedzik, J., Goujon-Durand, S., Jenffer, P. & Wesfreid, J. E. 2008 Transition to a time-dependent state of fluid flow in the wake of a sphere. Phys. Rev. E 77, 055308(R).Google Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.Google Scholar
Johnson, T. A. & Patel, V. C. 1999 Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech. 378, 1970.Google Scholar
Marais, C.2011 Dynamique tourbillonnaire dans le sillage d’un aileron oscillant: propulsion par ailes battantes biomimtiques. PhD thesis, ESPCI ParisTech.Google Scholar
Mathis, C., Provansal, M. & Boyer, L. 1984 The Bénard–von Kármán instability: an experimental study near the threshold. J. Phys. Lett. Paris 45, 483491.Google Scholar
Meliga, P., Chomaz, J.-M. & Sipp, D. 2009 Global mode interaction and pattern selection in the wake of disk: a weakly nonlinear expansion. J. Fluid Mech. 633, 159189.Google Scholar
Mittal, R. 2000 Response of the sphere wake to free stream fluctuations. Theor. Comput. Fluid Dyn. 13, 397419.Google Scholar
Monkewitz, P. A. & Huerre, P. 1982 Influence of the velocity ratio on the spatial instability of mixing layers. Phys. Fluids 25 (7), 11371143.Google Scholar
Ormiéres, D. & Provansal, M. 1999 Transition to turbulence in the wake of a sphere. Phys. Rev. Lett. 83 (1), 8083.Google Scholar
Provansal, M. 2006 Wake instabilities behind bluff bodies. In Dynamics of Spatio-Temporal Cellular Structures: Henri Benard Centenary Review (ed. Mutabazi, I., Wesfreid, J. E. & Guyon, E.), Springer Tracts in Modern Physics, vol. 207, pp. 179202. Springer.Google Scholar
Przadka, A., Miedzik, J., Gumowski, K., Goujon-Durand, S. & Wesfreid, J. E. 2008 The wake behind the sphere; analysis of vortices during transition from steadiness to unsteadiness. Arch. Mech. 60, 465472.Google Scholar
Raul, R., Bernard, P. S. & Buckley Jr, F. T. 1990 An application of the vorticity-vector potential method to laminar cube flow. Intl J. Numer. Meth. Fluids 10, 875888.CrossRefGoogle Scholar
Saha, A. K. 2004 Three-dimensional numerical simulations of the transition of flow past a cube. Phys. Fluids 16 (5), 16301646.CrossRefGoogle Scholar
Saha, A. K. 2006 Three-dimensional numerical study of flow and heat transfer from a cube placed in a uniform flow. Intl J. Heat Fluid Flow 26, 8094.Google Scholar
Schouveiler, L. & Provansal, M. 2002 Self-sustained oscillations in the wake of a sphere. Phys. Fluids 14 (11), 38463854.Google Scholar
Shenoy, A. R. & Kleinstreuer, C. 2008 Flow over a thin circular disk at low to moderate Reynolds numbers. J. Fluid Mech. 605, 253262.Google Scholar
Szaltys, P., Chrust, M., Przadka, A., Goujon-Durand, S., Tuckerman, L. S. & Wesfreid, J. E. 2011 Nonlinear evolution of instabilities behind spheres and disks. J. Fluids Struct. 28, 483487.Google Scholar
Thiria, B., Goujon-Durand, S. & Wesfreid, J. E. 2006 The wake of a cylinder performing rotary oscillations. J. Fluid Mech. 560, 123147.Google Scholar
Thompson, M. C., Leweke, T. & Provansal, M. 2001 Kinematics and dynamics of sphere wake transition. J. Fluids Struct. 15, 575585.Google Scholar
Tomboulides, A. G. & Orszag, S. A. 2000 Numerical investigation of transitional and weak turbulent flow past a sphere. J. Fluid Mech. 416, 4573.Google Scholar
Wesfreid, J. E. 2006 Scientific biography of Henri Bénard (1874–1939). In Dynamics of Spatio-Temporal Cellular Structures: Henri Benard Centenary Review (ed. Mutabazi, I., Wesfreid, J. E. & Guyon, E.), Springer Tracts in Modern Physics, vol. 207, pp. 937. Springer.Google Scholar
Wesfreid, J. E., Goujon-Durand, S. & Zielinska, B. J. A. 1996 Global mode behavior of the streamwise velocity in wakes. J. Phys. II (Paris) 6, 13431357.Google Scholar
Wu, J.-S. & Faeth, G. M. 1994 Sphere wakes at moderate Reynolds numbers in a turbulent environment. AIAA J. 32, 535541.CrossRefGoogle Scholar
Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.Google Scholar
Zielinska, B. J. A., Goujon-Durand, S., Dǔsek, J. & Wesfreid, J. E. 1997 Strongly nonlinear effect in unstable wakes. Phys. Rev. Lett. 79 (20), 38933896.Google Scholar
Zielinska, B. J. A. & Wesfreid, J. E. 1995 On the spatial structure of global modes in the wake flow. Phys. Fluids 7 (6), 14181428.Google Scholar