Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-15T06:54:43.605Z Has data issue: false hasContentIssue false

Experimental studies of aero-optical properties of subsonic turbulent boundary layers

Published online by Cambridge University Press:  05 January 2014

Stanislav Gordeyev*
Affiliation:
Aerospace and Mechanical Engineering Department, University of Notre Dame, Notre Dame, IN 46556, USA
Adam E. Smith
Affiliation:
Aerospace and Mechanical Engineering Department, University of Notre Dame, Notre Dame, IN 46556, USA
Jacob A. Cress
Affiliation:
Aerospace and Mechanical Engineering Department, University of Notre Dame, Notre Dame, IN 46556, USA
Eric J. Jumper
Affiliation:
Aerospace and Mechanical Engineering Department, University of Notre Dame, Notre Dame, IN 46556, USA
*
Email address for correspondence: sgordeye@nd.edu

Abstract

This paper gives the most-complete characterization to date of the optical aberrations imposed on a laser beam propagated through a subsonic, compressible, turbulent boundary layer in a zero-pressure gradient environment, over a range of boundary-layer thicknesses, oblique propagation angles and Mach numbers. This characterization is based on optical measurements using optical-wavefront-sensing instruments that have only become available in the last decade. The optical characterization includes and discusses in detail: optical-wavefront spectra, convective velocities of optically active large-scale structures and correlation functions in both streamwise and cross-stream directions, as well as root-mean-square optical path difference levels for different apertures. The scaling law based on the extended strong Reynolds analogy is derived and is shown to successfully collapse optical data collected in a number of facilities. Anisotropy of aero-optical distortions for different oblique viewing angles was experimentally quantified and is discussed.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abado, S., Gordeyev, S. & Jumper, E. 2013 Approach for two-dimensional velocity mapping. Opt. Eng. 52 (7), 071402.Google Scholar
Adrian, R. J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19 (4), 116.Google Scholar
Adrian, R. J., Meinhart, C. D. & Tomkins, C. D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.Google Scholar
Balakumar, B. J. & Adrian, R. J. 2007 Large- and very-large-scale motions in channel and boundary-layer flows. Phil. Trans. R. Soc. Lond. A 365, 665681.Google Scholar
Bardina, J. E., Huang, P. G. & Coakley, T. J. 1980 Turbulence modelling validation, testing, and development. NASA Tech. Mem. 110446.Google Scholar
Bergstrom, D. J., Akinlade, O. G. & Tachie, M. F. 2005 Skin friction correlation for smooth and rough wall turbulent boundary layers. Trans ASME: J. Fluids Engng 127 (6), 11461153.Google Scholar
Blackwelder, R. F. & Kovasznay, L. S. G. 1972 Time scales and correlations in a turbulent boundary layer. Phys. Fluids 15, 15451554.Google Scholar
Bull, M. K. 1967 Wall-pressure fluctuations associated with subsonic turbulent boundary layer flow. Fluid Mech. 28 (4), 719754.Google Scholar
Cress, J. A. 2010 Optical aberrations caused by coherent structures in a subsonic, compressible, turbulent boundary layer. PhD Thesis, University of Notre Dame, Notre Dame, IN.Google Scholar
Cress, J., Gordeyev, S. & Jumper, E. 2010 Aero-optical measurements in a heated, subsonic, turbulent boundary layer. AIAA Paper 2010-0434.Google Scholar
Dennis, D. J & Nickels, T. B. 2008 On the limitations of Taylor’s hypothesis in constructing long structures in a turbulent boundary layers. J. Fluid Mech. 614, 197206.Google Scholar
De Lucca, N., Gordeyev, S. & Jumper, E. J 2012 The study of aero-optical and mechanical jitter for flat window turrets. AIAA Paper 2012-0623.Google Scholar
Dimotakis, P. E., Catrakis, H. J. & Fourguette, D. C. 2001 Flow structure and optical beam propagation in high-Reynolds-number gas-phase shear layers and jets. J. Fluid Mech. 433, 105134.CrossRefGoogle Scholar
Deron, R., Tromeur, E., Aupoix, B. & Desse, J. M. 2002 Rapport d’Activités 2001 du Project de Recherche Fédérateur Effets Aéro-Optiques, No. RT 4/06008 DOTA, ONERA, France.Google Scholar
Dumas, J., Fuqua, M. & Hayden, T. 2005 Final Report: Boundary Layer Survey of the Subsonic Wind Tunnel. Department of Aeronautics, United States Air Force Academy.Google Scholar
Eckett, E. R. G. 1955 Engineering relations for friction and heat transfer to surfaces in high velocity flow. J. Aeronaut. Sci. 22 (8), 585587.Google Scholar
Fitzgerald, E. J. & Jumper, E. J. 2004 The optical distortion mechanism in a nearly incompressible free shear layer. J. Fluid Mech. 512, 153189.Google Scholar
Gardiner, W. C. Jr., Hidaka, Y. & Tanzawa, T. 1980 Refractivity of combustion gases. Combust. Flame 40, 213219.Google Scholar
Gilbert, K. G. 1982 KC-135 aero-optical boundary-layer/shear-layer experiments. In Aero-Optical Phenomena (ed. Gilbert, K. G. & Otten, L. J.), Progress in Astronautics and Aeronautics, vol. 80, pp. 306324. American Institute of Aeronautics and Astronautics.Google Scholar
Gilbert, K. G. & Otten, L. J. (Eds.) 1982 Aero-Optical Phenomena. (Progress in Astronautics and Aeronautics Series), vol. 80. American Institute of Aeronautics and Astronautics.Google Scholar
Gordeyev, S., Duffin, D. & Jumper, E. J. 2004 Aero-optical measurements using Malley probe and high- bandwidth 2-D wavefront sensors. International Conference on Advanced Optical Diagnostics in Fluids, Solids, and Combustion, Tokyo. Visualization Society of Japan.Google Scholar
Gordeyev, S., Cress, J. & Jumper, E. 2013 Far-field laser intensity drop-outs caused by turbulent boundary layers. J. Directed Energy 5 (1), 5875.Google Scholar
Gordeyev, S., Jumper, E., Ng, T. & Cain, A. 2003 Aero-optical characteristics of compressible, subsonic turbulent boundary layer. AIAA Paper 2003-3606.Google Scholar
Gordeyev, S., Hayden, T. & Jumper, E. 2007 Aero-optical and flow measurements over a flat-windowed turret. AIAA J. 45 (2), 347357.Google Scholar
Gordeyev, S. & Jumper, E. J. 2010 Fluid dynamics and aero-optics of turrets. Prog. Aerosp. Sci. 46, 388400.Google Scholar
Gordeyev, S., Jumper, E. & Hayden, T. 2012 Aero-optical effects of supersonic boundary layers. AIAA J. 50 (3), 682690.CrossRefGoogle Scholar
Gladstone, J. H. & Dale, T. P. 1863 Researches on the refraction, dispersion, and sensitiveness of liquids. Phil. Trans. R. Soc. Lond. 153, 317343.Google Scholar
Goodman, J. W. 2005 Introduction to Fourier Optics. Roberts and Company.Google Scholar
Hugo, R. J. & Jumper, E. J. 2000 Applicability of the aero-optic linking equation to a highly coherent, transitional shear layer. Appl. Opt. 39 (24), 43924401.Google Scholar
Hutchins, N., Hambleton, W. T. & Marusic, I. 2005 Inclined cross-stream stereo particle image velocimetry measurements in turbulent boundary layers. J. Fluid Mech. 541, 2134.CrossRefGoogle Scholar
Hutchins, N., Monty, J. P., Ganapathisubramani, B., Ng, H. C. H. & Marusic, I. 2011 Three-dimensional conditional structure of a high-Reynolds-number turbulent boundary layer. J. Fluid Mech. 673, 255285.Google Scholar
Jumper, E. J. & Fitzgerald, E. J. 2001 Recent advances in aero-optics. Prog. Aerosp. Sci. 37, 299339.Google Scholar
Liepmann, H. W. 1952 Deflection and diffusion of a light ray passing through a boundary layer. Report SM-14397, Douglas Aircraft Company, Santa Monica Division, Santa Monica, California.Google Scholar
Mahajan, V. 1983 Strehl ratio for aberration in terms of their aberration variance. J. Opt. Soc. Am. 73 (6), 860861.Google Scholar
Malley, M., Sutton, G. W. & Kincheloe, N. 1992 Beam-Jitter measurements of turbulent aero-optical path differences. Appl. Opt. 31, 44404443.Google Scholar
Masson, B., Wissler, J. & McMackin, L. 1994 Aero-optical study of a NC-135 fuselage boundary layer. AIAA Paper 94-0277.Google Scholar
Morkovin, M. V. 1962 Effects of compressibility on turbulent flows. In Mechanique de la Turbulence (ed. Favre, A.), pp. 367380. CNRS.Google Scholar
Nagib, H. M., Chauhan, K. A. & Monkewitz, P. A. 2007 Approach to an asymptotic state for zero pressure gradient turbulent boundary layers. Phil. Trans. R. Soc. A 365, 755770.CrossRefGoogle Scholar
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601639.CrossRefGoogle Scholar
Rose, W. C. 1979 Measurements of Aerodynamic parameters affecting optical performance. Air Force Weapons Laboratory Final Report, AFWL-TR-78-191.Google Scholar
Rose, W. C. & Johnson, E. A. 1982 Unsteady density and velocity measurements in the $6 \times 6$ ft wind tunnel. In Aero-Optical Phenomena (ed. Gilbert, K. & Otten, L. J.), Progress in Astronautics and Aeronautics, vol. 80, pp. 218232. American Institute of Aeronautics and Astronautics.Google Scholar
Rose, W. C., Johnson, D. A. & Otten, L. J. 1982 Summary of all cycle II.5 aerodynamic shear- and boundary-layer measurements. In Aero-Optical Phenomena (ed. Gilbert, K. G. & Otten, L. J.), Progress in Astronautics and Aeronautics, vol. 80, pp. 294305. American Institute of Aeronautics and Astronautics.Google Scholar
Ross, T. S. 2009 Limitations and applicability of the Maréchal approximation. Appl. Opt. 48 (10), 18121818.Google Scholar
Schlichting, H. 1979 Boundary-Layer Theory. 7th edn. pp. 635–647. McGraw-Hill.Google Scholar
Siegenthaler, J. P. 2008 Guidelines for adaptive-optic correction based on aperture filtration, PhD thesis, University of Notre Dame.Google Scholar
Siegenthaler, J., Gordeyev, S. & Jumper, E. 2005 Shear layers and aperture effects for aero-optics. AIAA Paper 2005-4772.Google Scholar
Smith, A. & Gordeyev, S. 2013a Evaluation of passive boundary layer flow control methods for aero-optic mitigation. AIAA Paper 2013-0718.Google Scholar
Smith, A. & Gordeyev, S. 2013b The effects of wall cooling on aero-optical aberrations caused by subsonic turbulent boundary layers. AIAA Paper 2013-3133.Google Scholar
Smits, A. J. & Dussauge, J.-P. 1996 Turbulent Shear Layers in Supersonic Flow. American Institute of Physics.Google Scholar
Spina, E. F., Smits, A. J. & Robinson, S. K. 1994 The physics of supersonic turbulent boundary layers. Annu. Rev. Fluid Mech. 26, 287319.Google Scholar
Stine, H. A. & Winovich, W. 1956 Light diffusion through high-speed turbulent boundary layers. Research Memorandum A56B21, NACA, Washington.Google Scholar
Sutton, G. W. 1969 Effects of turbulent fluctuations in an optically active fluid medium. AIAA J. 7 (9), 17371743.Google Scholar
Sutton, G. W. 1985 Aero-optical foundations and applications. AIAA J. 23, 15251537.Google Scholar
Tatarski, V. I. 1961 Wave Propagation in a Turbulent Medium. p. 285. McGraw-Hill.Google Scholar
Tomkins, C. D. & Adrian, R. J. 2003 Spanwise structure and scale growth in turbulent boundary layers. J. Fluid Mech. 490, 3774.Google Scholar
Tromeur, E., Garnier, E. & Sagaut, P. 2006 Large-eddy simulation of aero-optical effects in a spatially developing turbulent boundary layer. J. Turbulence 7 (1), 127.Google Scholar
Tromeur, E., Garnier, E., Sagaut, P. & Basdevant, C. 2002 LES of aero-optical effects in turbulent boundary layer. In Engineering Turbulence Modelling and Experiments 5: Proceedings of the 5th International Symposium on Engineering Turbulence Modelling and Measurements, Mallorca, Spain, 16–18 September 2002 (ed. Rodi, W. & Fueyo, N.), pp. 327336. Elsevier Science Ltd.Google Scholar
Tromeur, E., Garnier, E., Sagaut, P. & Basdevant, C. 2003 Large eddy simulations of aero-optical effects in a turbulent boundary layer. J. Turbul. 4.CrossRefGoogle Scholar
Truman, C. R. 1992 The influence of turbulent structure on optical phase distortion through turbulent shear layer. AIAA Paper 92-2817.Google Scholar
Truman, C. R. & Lee, M. J. 1990 Effects of organized turbulence structures on the phase distortions in a coherent optical beam propagating through a turbulent shear layer. Phys. Fluids 2, 851857.Google Scholar
Tsuji, Y., Fransson, J. H. M., Alfredsson, P. H. & Johansson, A. V. 2007 Pressure statistics and their scaling in high-Reynolds-number turbulent boundary layers. J. Fluid Mech. 585, 140.Google Scholar
Udin, A. K. M, Perry, A. E. & Marusic, I. 1997 On the validity of Taylor’s hypothesis in wall turbulence. J. Mech. Eng. Res. Dev. 19–20, 5766.Google Scholar
Van Dyke, M. 1982 An Album of Fluid Motion. p. 92. The Parabolic Press.Google Scholar
Wang, M., Mani, A. & Gordeyev, S. 2012 Physics and Computation of Aero-Optics. Annu. Rev. Fluid Mech. 44, 299321.Google Scholar
Wang, K. & Wang, M. 2012 Aero-optics of subsonic turbulent boundary layers. J. Fluid Mech. 696, 122151.Google Scholar
Wang, K. & Wang, M. 2013 On the accuracy of Malley probe measurements of aero-optical effects: a numerical investigation. Opt. Eng. 52, 071407.Google Scholar
Willmarth, W. W. 1975 Pressure fluctuations beneath turbulent boundary layers. Annu. Rev. Fluid Mech. 7, 1336.Google Scholar
Willmarth, W. W. & Wooldridge, C. E. 1962 Measurements of the fluctuating pressure at the wall beneath a thick turbulent boundary layer. J. Fluid Mech. 14 (2), 187210.Google Scholar
Wittich, D., Gordeyev, S. & Jumper, E. 2007 Revised scaling of optical distortions caused by compressible, subsonic turbulent boundary layers. AIAA Paper 2007-4009.Google Scholar
White, M. & Visbal, M. 2012 Aero-optics of compressible boundary layers in the transonic regime. AIAA Paper 2012-2984.Google Scholar
Wyckham, C. & Smits, A. 2009 Aero-optic distortion in transonic and hypersonic turbulent boundary layers. AIAA J. 47 (9), 21582168.Google Scholar