Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-11T01:45:32.415Z Has data issue: false hasContentIssue false

Experimental study of a model valve with flexible leaflets in a pulsatile flow

Published online by Cambridge University Press:  18 December 2013

R. Ledesma-Alonso
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apdo. Postal 70-360, México D.F. 04510, México
J. E. V. Guzmán
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apdo. Postal 70-360, México D.F. 04510, México
R. Zenit*
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apdo. Postal 70-360, México D.F. 04510, México
*
Email address for correspondence: zenit@unam.mx

Abstract

An experimental investigation was conducted to study the dynamical behaviour of a model valve in a pulsatile flow. The valve is modelled as a pair of curved, rectangular, flexible leaflets that open and close under a time-periodic flow. Using image analysis, the range of flow parameters for which a valve (of a particular geometry and material properties of the leaflets) works correctly were identified. A correct performance was considered to be when the valve opened in one direction but blocked the flow in the reversed direction. A model is proposed to predict the performance of the valves. Furthermore, an analysis of fluid strains is conducted for valves that operate correctly to identify the influence of the valve’s design on fluid stresses. The main purpose of this investigation is to gain insight for the design of future prosthetic heart valves.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso, C., Pries, A. R. & Gaehtgens, P. 1993 Time-dependent rhelogical behaviour of blood at low shear in narrow vertical tubes. Am. J. Physiol. Heart Circ. Physiol. 265, H553H561.CrossRefGoogle Scholar
Barshtein, G., Wajnblum, D. & Yedgar, S. 2000 Kinetics of linear rouleaux formation studied by visual monitoring of red cell dynamic organization. Biophys. J. 78, 24702474.CrossRefGoogle ScholarPubMed
Bernacca, G. M., O’Connor, B., Williams, D. F. & Wheatley, D. J. 2002 Hydrodynamic function of polyurethane prosthetic heart valves: influences of Young’s modulus and leaflet thickness. Biomaterials 23, 4550.CrossRefGoogle ScholarPubMed
Bluestein, D., Rambod, E. & Gharib, M. 2000 Vortex shedding as a mechanism for free emboli formation in mechanical heart valves. J. Biomech. Engng 122, 125134.CrossRefGoogle ScholarPubMed
Bogdanovich, A. E. & Pastore, C. M. 1996 Mechanics of Textile and Laminated Composites: With Applications to Structural Analysis. Chapman and Hall.Google Scholar
Diourté, B., Siché, J. P., Comparat, V., Baguet, J. P. & Mallion, J. M. 1999 Study of arterial blood pressure by a Windkessel-type model: influence of arterial functional properties. Comput. Meth. Progress Biomed. 60, 1122.CrossRefGoogle ScholarPubMed
Giersiepen, M., Wurzinger, L. J., Opitz, R. & Reul, H. 1990 Estimation of shear stress-related blood damage in heart valve protheses – in vitro comparison of 25 aortic valves. Intl J. Artif. Organs 13 (5), 300306.CrossRefGoogle Scholar
de Hart, J., Peters, G. W. M., Schreurs, P. J. G. & Baaijens, F. P. T. 2000 A two-dimensional fluid-structure interaction model of the aortic valve. J. Biomech. 33, 10791088.CrossRefGoogle ScholarPubMed
Hellums, D. 1994 1993 Whitaker lecture: biorheology in thrombosis research. Ann. Biomed. Engng 22, 445455.CrossRefGoogle ScholarPubMed
Hutchison, C., Sullivan, P. & Ethier, C. R. 2011 Measurements of steady flow through a bileaflet mechanical heart valve using stereoscopic PIV. Med. Biol. Engng Comput. 49, 325335.CrossRefGoogle ScholarPubMed
Jamieson, W. R. 2002 Current and advanced prostheses for cardiac valvular replacement and reconstruction surgery. Surg. Technol. Intl 10, 121149.Google ScholarPubMed
Ledesma-Alonso, R. 2010 A study of the pulsatile flow and its interaction with rectangular leaflets. Master’s thesis, Universidad Nacional Autonoma de Mexico.Google Scholar
Leo, H. L., Dasi, L. P., Carberry, J., Simon, H. A. & Yoganathan, A. P. 2006 Fluid dynamic assessment of three polymeric heart valves using particle image velocimetry. Ann. Biomed. Engng 34, 936952.CrossRefGoogle ScholarPubMed
Lim, W. L., Chew, Y. T., Chew, T. C. & Low, H. T. 2001 Pulsatile flow studies of a porcine bioprosthetic aortic valve in vitro: PIV measurements and shear-induced blood damage. J. Biomech. 34, 14171427.CrossRefGoogle ScholarPubMed
Lopez-Zazueta, A., Ledesma-Alonso, R., Guzman, J. E. V. & Zenit, R. 2011 Study of the velocity and strain fields in the flow through prosthetic heart valves. Trans. ASME: J. Biomech. Engng 133, 10.Google ScholarPubMed
Ozcan, O., Meyer, K. E. & Larsen, P. S. 2005 Measurement of mean rotation and strain-rate tensors by using stereoscopic PIV. Exp. Fluids 39, 771783.CrossRefGoogle Scholar
Palacios-Morales, C. A. & Zenit, R. 2013 The formation of vortex rings in shear-thinning liquids. J. Non-Newtonian Fluid Mech. 194, 113.CrossRefGoogle Scholar
Pedrizzetti, G. & Domenichini, F. 2006 Flow-driven opening of a valvular leaflet. J. Fluid Mech. 569, 321330.CrossRefGoogle Scholar
Pohl, M., Wendt, M. O., Werner, S., Koch, B. & Lerche, D. 1996 In vitro testing of artificial heart valves: comparison between Newtonian and non-Newtonian fluids. Artif. Organs 20 (1), 3746.CrossRefGoogle ScholarPubMed
Prot, V., Skallerud, B. & Holzapfel, A. 2007 Tranversely isotropic membrane shells with application to mitral valve mechanics constitutive modelling and finite element implementation. Intl J. Numer. Meth. Engng 71, 9871008.CrossRefGoogle Scholar
Schneider, S. W., Nuschele, S., Wixforth, A., Gorzelanny, C., Alexander-Katz, A., Netz, R. R. & Schneider, M. F. 2007 Shear-induced unfolding triggers adhesion of von Willebrand factor fibres. Proc. Natl Acad. Sci. 104 (19), 78997903.CrossRefGoogle Scholar
Sherwood, L. 1997 Fundamentals of Physiology: A Human Perspective, 3rd edn. McGraw Hill.Google Scholar
Stijnen, J. M. A., de Hart, J., Bovendeerd, P. H. M. & van de Vosse, F. N. 2004 Evaluation of a fictitious doman method for predicting dynamic response of mechanical heart valves. J. Fluids Struct. 19, 835850.CrossRefGoogle Scholar
Watton, P. N., Luo, X. Y., Wang, X., Bernacca, G. M., Molloy, P. & Wheatley, D. J. 2006 Dynamic modelling of prosthetic chorded mitral valves using the immersed boundary method. J. Biomech. 40, 613626.CrossRefGoogle ScholarPubMed
Whitaker, S. 1981 Introduction to Fluid Mechanics. Krieger.Google Scholar
Yoganathan, A. P., He, Z. & Casey-Jones, S. 2004 Fluid mechanics of heart valves. Annu. Rev. Biomed. Engng 6, 331362.CrossRefGoogle ScholarPubMed