Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T10:46:20.326Z Has data issue: false hasContentIssue false

Experimental velocity profiles in laminar flow around spheres at intermediate Reynolds numbers

Published online by Cambridge University Press:  29 March 2006

L. E. Seeley
Affiliation:
Department of Chemical Engineering and Applied Chemistry, University of Toronto Present address: Falconbridge Nickel Mines, Ltd, Sudbury, Ontario, Canada.
R. L. Hummel
Affiliation:
Department of Chemical Engineering and Applied Chemistry, University of Toronto
J. W. Smith
Affiliation:
Department of Chemical Engineering and Applied Chemistry, University of Toronto

Abstract

Normal and tangential velocities in the boundary layer and out into the free stream have been obtained using a non-disturbing flow visualization technique for uniform laminar flow around a sphere. The non-similar data are available in tables at 2.5° intervals from 20° from the front to about 15° past the separation point a t Reynolds numbers of 290, 750, 1300 and 3000. Stream functions calculated by LeClair using a numerical solution of the Navier-Stokes equation at Re 21 300 are not in good agreement with measured values from 30° to 60°, but are in much better agreement around the separation point. Too few grid points near the sphere where the tangential velocities rise to a maximum above free-stream values may account for the difference.

Type
Research Article
Copyright
© 1975 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dunn, S. G. & Smith J. W. 1972 Can. J. Chem. Engng, 50, 561.
Frosslino N. 1958 N.A.C.A. Tech. Memo. no. 1432.
Hamielic A. E., Hoffman, T. W. & Ross L. L. 1967 A.I.Ch.E. J. 13, 212.
Iribarne A. DEP., Hummel R. L., Frantisak, F. & Smith J. W. 1969 Chem. Engng Prog. 65, 60.
Jenson V. G. 1959 Proc. Roy. SOC. A 249, 346.
Kalra, T. R. & Uhlherr P. H. T. 1971 4th Aust. Conf. on Hydraul. & Fluid Mech., Monash University.
Knapp, C. F. & Roache P. J. 1968 A.I.A.A. J. 6, 29.
Leclair B. P. 1970 Ph.D. thesis, Chem. Engng, McMaster University, Hamilton, Ontario.
Leclair, B. P. & Hamielec A. E. 1970 Fluid Dyn. Symp., McMaster University, Hamilton, Ontario.
Leclair B. P., Hamielec, A. E. & Pruppacher H. R. 1970 J. Atmos. Sci. 27, 308.
Lee, K. & Barrow H. 1968 Int. J. Heat Mass Transfer, 11, 1013.
Libby, P. A. & Liu T. M. 1967 A.I.A.A. J. 5, 1040.
Linton, M. & Sutherland K. L. 1960 Chem. Engng Sci. 12, 214.
Locheil, A. C. & Calderbank P. H. 1964 Chem. Engng Sci. 19, 471.
Masliyah, S. H. & Epstein N. 1970 J. Fluid Mech. 44, 493.
Popovich, A. T. & Hummel R. L. 1967 Chem. Engng Sci. 22, 21.
Pruppacher H. R., Leclair, B. P. & Hamielec A. E. 1970 J. Fluid Mech. 44, 781.
Raitiiby, G. D. & Eckert E. R. G. 1968 Warme & Stoffubertragung, 1, 87.
Rimon, Y. & Cheng S. I. 1969 Phys. Fluids, 12, 949.
Seeley L. E. 1972 Ph.D. thesis, Chem. Engng Dept., University of Toronto.
Smith, J. W. & Hummel R. L. 1973 J. S.M.P.T.E. 82, 278.
Son, J. S. & Hanratty T. J. 1969 J. Fluid Mech. 35, 369.
Taneda S. 1956 J. Phys. SOC. Japan, 11, 1104.
Tang Y. S., Duncan, J. M. & Schweyer H. E. 1953 N.A.C.A. Tech. Note, no. 2867.Google Scholar
Torobin, L. B. & Gauvin W. H. 1959 Can. J. Chem. Engng, 37, 129.