Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T07:22:58.113Z Has data issue: false hasContentIssue false

Experiments on localized secondary instability in bypass boundary layer transition

Published online by Cambridge University Press:  16 March 2017

G. Balamurugan
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology, Kanpur 208016, India
A. C. Mandal*
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology, Kanpur 208016, India
*
Email address for correspondence: alakeshm@iitk.ac.in

Abstract

An experimental study on localized secondary instability of unsteady streamwise streaks in bypass boundary layer transition under an elevated level of free-stream turbulence has been carried out mainly using the particle image velocimetry (PIV) technique. Simultaneous orthogonal dual-plane PIV measurements were performed for a concurrent examination of the transitional flow features in both wall-normal and spanwise planes. These quantitative and simultaneous visualizations clearly show the wall-normal view of a low-speed streak undergoing sinuous/varicose motion in the spanwise plane. An oscillating shear layer in the wall-normal plane is found to be associated with the sinuous/varicose streak oscillation in the spanwise plane. Further, these measurements indicate that a localized secondary instability wavepacket can originate near the boundary layer edge. The time-resolved PIV measurements in the wall-normal plane clearly show how an instability develops on a lifted-up inclined shear layer and leads to flow breakdown. The estimated wavelength and convection velocity of such instabilities are found to compare well with those calculated from the one-dimensional linear stability analysis of the spatially averaged velocity profiles associated with the lifted-up shear layers. The time-resolved PIV measurements in the spanwise plane also facilitate quantitative visualizations of sinuous and varicose instabilities. These measurements experimentally confirm that a varicose instability at the juncture of an incoming high-speed streak and a downstream low-speed streak can eventually lead to the formation of lambda structures. The estimated convection velocity, wavelength and growth rate of these instabilities are found to be consistent with the numerical results reported in the literature. Moreover, the streak secondary instability is found to be apparent in the velocity contours, while the estimated streak amplitude is approximately 30 % of the free-stream velocity.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alkislar, M. B., Krothapalli, A. & Lourenco, L. M. 2003 Structure of a screeching rectangular jet: a stereoscopic particle image velocimetry study. J. Fluid Mech. 489, 121154.CrossRefGoogle Scholar
Andersson, P., Berggren, M. & Henningson, D. S. 1999 Optimal disturbances and bypass transition in boundary layers. Phys. Fluids 11, 134150.CrossRefGoogle Scholar
Andersson, P., Brandt, L., Bottaro, A. & Henningson, D. S. 2001 On the breakdown of boundary layer streaks. J. Fluid Mech. 428, 2960.Google Scholar
Arnal, D. & Juillen, J. C.1978 Contribution experimentale à l’ètude de la receptivité d’une couche limite laminarire, à la turbulence de l’ecoulement general. Rap. Tech. 1/5018 AYD ONERA.Google Scholar
Asai, M., Minagawa, M. & Nishioka, M. 2002 The instability and breakdown of a near-wall low-speed streak. J. Fluid Mech. 455, 289314.CrossRefGoogle Scholar
Balamurugan, G.2014 Experiments on bypass boundary layer transition using parallel rod grids. Master’s thesis, Indian Institute of Technology, Kanpur, India.Google Scholar
Batchelor, G. K. 1982 The Theory of Homogeneous Turbulence. Cambridge University Press.Google Scholar
Boutilier, M. S. H. & Yarusevych, S. 2012 Separated shear layer transition over an airfoil at a low Reynolds number. Phys. Fluids 24, 084105,1–23.CrossRefGoogle Scholar
Brandt, L. 2007 Numerical studies of the instability and breakdown of a boundary-layer low-speed streak. Eur. J. Mech. (B/Fluids) 26, 6482.Google Scholar
Brandt, L., Schlatter, P. & Henningson, D. S. 2004 Transition in boundary layers subject to free-stream turbulence. J. Fluid Mech. 517, 167198.Google Scholar
Chernoray, V. G., Kozlov, V. V., Lofdahl, L. & Chun, H. H. 2006 Visualization of sinusoidal and varicose instabilities of streaks in a boundary layer. J. Vis. 9, 437444.CrossRefGoogle Scholar
Coleman, H. W. & Steele, W. G. 2009 Experimentation, Validation, and Uncertainty Analysis for Engineers. Wiley.Google Scholar
Dabaria, V.2015 Linear stability analysis of measured inflectional velocity profiles in separated boundary layer flows. Master’s thesis, Indian Institute of Technology, Kanpur, India.Google Scholar
Dennis, D. J. C. & Nickels, T. B. 2011 Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 1. Vortex packets. J. Fluid Mech. 673, 180217.Google Scholar
Durbin, P. & Wu, X. 2007 Transition beneath vortical disturbances. Annu. Rev. Fluid Mech. 39, 107128.CrossRefGoogle Scholar
Ellingsen, T. & Palm, E. 1975 Stability of linear flow. Phys. Fluids 18, 487488.CrossRefGoogle Scholar
Fransson, J. H. M., Matsubara, M. & Alfredsson, P. H. 2005 Transition induced by freestream turbulence. J. Fluid Mech. 527, 125.Google Scholar
Ganapathisubramani, B., Longmire, E. K., Marusic, I. & Pothos, S. 2005 Dual-plane PIV technique to determine the complete velocity gradient tensor in a turbulent boundary layer. Exp. Fluids 39, 222231.CrossRefGoogle Scholar
Goldstein, M. E. & Wundrow, D. W. 1998 On the environmental realizability of algebraically growing disturbances and their relation to Klebanoff modes. Theor. Comput. Fluid Dyn. 10, 171186.CrossRefGoogle Scholar
Gomes-Fernandes, R., Ganapathisubramani, B. & Vassilicos, J. C. 2012 Particle image velocimetry study of fractal-generated turbulence. J. Fluid Mech. 711, 306336.CrossRefGoogle Scholar
Hack, M. J. P. & Zaki, T. A. 2014 Streak instabilities in boundary layers beneath free-stream turbulence. J. Fluid Mech. 741, 280315.Google Scholar
Hambleton, W. T., Hutchins, N. & Marusic, I. 2006 Simultaneous orthogonal-plane particle image velocimetry measurements in a turbulent boundary layer. J. Fluid Mech. 560, 5364.Google Scholar
Hanson, R. E., Buckley, H. P. & Lavoie, P. 2012 Aerodynamic optimization of the flat-plate leading edge for experimental studies of laminar and transitional boundary layers. Exp. Fluids 53, 863871.CrossRefGoogle Scholar
Hernon, D., Walsh, E. J. & Mceligot, D. M. 2007 Experimental investigation into the routes to bypass transition and the shear-sheltering phenomenon. J. Fluid Mech. 591, 461479.CrossRefGoogle Scholar
Hultgren, L. S. & Gustavsson, L. H. 1981 Algebraic growth of disturbances in a laminar boundary layer. Phys. Fluids 24, 10001004.Google Scholar
Jacobs, R. G. & Durbin, P. A. 2001 Simulations of bypass transition. J. Fluid Mech. 428, 185212.Google Scholar
Kachanov, Y. S. 1994 Physical mechanism of laminar-boundary-layer transition. Annu. Rev. Fluid Mech. 26, 411482.CrossRefGoogle Scholar
Kähler, C. J. & Kompenhans, J. 2000 Fundamentals of multiple plane stereo particle image velocimetry. Exp. Fluids 29, S070S077.Google Scholar
Kendall, J. M.1985 Experimental study of disturbances produced in a pre-transitional laminar boundary layer by weak freestream turbulence. AIAA Paper 85-1695.Google Scholar
Kendall, J. M.1998 Experiments on boundary layer receptivity to freestream turbulence. AIAA Paper 98-0530.Google Scholar
King, R. A.2000 Receptivity and growth of two- and three-dimensional disturbances in a Blasius boundary layer. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA.Google Scholar
Klebanoff, P. S. 1971 Effect of freestream turbulence on the laminar boundary layer. Bull. Am. Phys. Soc. 10, 13231334.Google Scholar
Klingmann, R. G. B., Boiko, A. V., Westin, K. J. A., Kozlov, V. V. & Alfredsson, P. H. 1993 Experiments on the stability of Tollmien–Schichting waves. Eur. J. Mech. (B/Fluids) 12, 493514.Google Scholar
Konishi, Y. & Asai, M. 2010 Development of subharmonic disturbance in spanwise-periodic low-speed streaks. Fluid Dyn. Res. 42, 035504.Google Scholar
Kuan, C. L. & Wang, T. 1990 Investigation of the intermittent behavior of transitional boundary layer using a conditional averaging technique. Exp. Therm. Fluid Sci. 3, 157173.Google Scholar
Kurian, T. & Fransson, J. H. M. 2009 Grid-generated turbulence revisited. Fluid Dyn. Res. 41, 021403.Google Scholar
Landahl, M. T. 1980 A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 98, 243251.CrossRefGoogle Scholar
Lazar, E., DeBlauw, B., Glumac, N., Dutton, C. & Elliott, G.2010 A practical approach to PIV uncertainty analysis. AIAA Paper 2010-4355.CrossRefGoogle Scholar
Leib, S. J., Wundrow, D. W. & Goldstein, M. E. 1999 Effect of free-stream turbulence and other vortical disturbances on a laminar boundary layer. J. Fluid Mech. 380, 169203.CrossRefGoogle Scholar
Li, Y. & Gaster, M. 2006 Active control of boundary-layer instabilities. J. Fluid Mech. 550, 185205.CrossRefGoogle Scholar
Liu, Z., Adrian, R. J. & Hanratty, T. J. 2001 Large-scale modes of turbulent channel flow: transport and structure. J. Fluid Mech. 448, 5380.CrossRefGoogle Scholar
Lourenco, L. M. & Krothapalli, A. 2000 TRUE resolution PIV: a mesh-free second order accurate algorithm. In Proceedings of the International Conference in Applications of Lasers to Fluid Mechanics, Lisbon, Portugal.Google Scholar
Luchini, P. 2000 Reynolds-number-independent instability of the boundary layer over a flat surface: optimal perturbations. J. Fluid Mech. 404, 289309.Google Scholar
Lundell, F. 2004 Streak oscillations of finite length: disturbance evolution and growth. Phys. Fluids 16, 32273230.CrossRefGoogle Scholar
Mandal, A. C. & Dey, J. 2011 An experimental study of boundary layer transition induced by a cylinder wake. J. Fluid Mech. 684, 6084.CrossRefGoogle Scholar
Mandal, A. C., Venkatakrishnan, L. & Dey, J. 2010 A study on boundary layer transition induced by freestream turbulence. J. Fluid Mech. 660, 114146.Google Scholar
Mans, J., Kadijk, E. C., de Lange, H. C. & van Steenhoven, A. A. 2005 Breakdown in a boundary layer exposed to free-stream turbulence. Exp. Fluids 39, 10711083.CrossRefGoogle Scholar
Mans, J., de Lange, H. C. & van Steenhoven, A. A. 2007 Sinuous breakdown in a flat plate boundary layer exposed to free-stream turbulence. Phys. Fluids 19, 088101.Google Scholar
Matsubara, M. & Alfredsson, P. H. 2001 Disturbance growth in boundary layers subjected to free-stream turbulence. J. Fluid Mech. 430, 149169.Google Scholar
Morkovin, M. V. 1969 The many faces of transition. In Viscous Drag Reduction (ed. Wells, C. S.), Plenum.Google Scholar
Nagarajan, S., Lele, S. K. & Ferziger, J. H. 2007 Leading-edge effects in bypass transition. J. Fluid Mech. 572, 471504.Google Scholar
Nishioka, M., Asai, M. & Iida, S. 1981 Wall phenomena in the final stage of transition to turbulence. In Transition and Turbulence (ed. Meyer, R. E.), pp. 113126. Academic.Google Scholar
Nolan, K. P. & Walsh, E. J. 2012 Particle image velocimetry measurements of a transitional boundary layer under free stream turbulence. J. Fluid Mech. 702, 215238.CrossRefGoogle Scholar
Nolan, K. P., Walsh, E. J. & McEligot, D. M. 2010 Quadrant analysis of a transitional boundary layer subject to free-stream turbulence. J. Fluid Mech. 658, 310335.Google Scholar
O’Neill, P. L., Nicolaides, D., Honnery, D. & Soria, J. 2004 Autocorrelation functions and the determination of integral length with reference to experimental and numerical data. In 15th Australasian Fluid Mechanics Conference, The University of Sydney, Sydney, Australia, pp. 1317.Google Scholar
Ovchinnikov, V., Choudhari, M. M. & Piomelli, U. 2008 Numerical simulations of boundary-layer bypass transition due to high-amplitude free-stream turbulence. J. Fluid Mech. 613, 135169.CrossRefGoogle Scholar
Pasquale, D. D. & Rona, A. 2010 Data assessment of two ERCOFTAC transition test cases for CFD validation. In Proceedings of the 7th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Turkey 19–21 July, pp. 21552160.Google Scholar
Phani Kumar, P., Mandal, A. C. & Dey, J. 2015 Effect of a mesh on boundary layer transitions induced by free-stream turbulence and an isolated roughness element. J. Fluid Mech. 772, 445477.CrossRefGoogle Scholar
Philip, J., Karp, M. & Cohen, J. 2016 Streak instability and generation of hairpin-vortices by a slotted jet in channel crossflow: experiments and linear stability analysis. Phys. Fluids 28, 014103,1–21.Google Scholar
Pook, D. A. & Watmuff, J. H. 2014 Streak generation in wind tunnels. Phys. Fluids 26, 073605.CrossRefGoogle Scholar
Pook, D. A., Watmuff, J. H. & Orifici, A. C. 2016 Test section streaks originating from imperfections in a zither located upstream of a contraction. J. Fluid Mech. 787, 254291.Google Scholar
Raffel, M., Willert, C. E., Wereley, S. & Kompenhansürgen, J. 2013 Particle Image Velocimetry: A Practical Guide. Springer.Google Scholar
Raghav, V. & Komerath, N. 2014 Velocity measurements on a retreating blade in dynamic stall. Exp. Fluids 55, 1669.CrossRefGoogle Scholar
Rai, M. M. & Moin, P. 1993 Direct numerical simulation of transition and turbulence in a spatially evolving boundary layer. J. Comput. Phys. 109, 169192.CrossRefGoogle Scholar
Reed, H. L., Saric, W. S. & Arnal, D. 1996 Linear stability theory applied to boundary layers. Annu. Rev. Fluid Mech. 28, 389428.Google Scholar
Reuter, J. & Rempfer, D. 2004 Analysis of pipe flow transition. Part I. Direct numerical simulation. Theor. Comput. Fluid Dyn. 17, 273292.CrossRefGoogle Scholar
Rist, U. & Fasel, H. 1995 Direct numerical simulation of controlled transition in a flat-plate boundary layer. J. Fluid Mech. 298, 211248.Google Scholar
Roach, P. E. 1987 The generation of nearly isotropic turbulence by means of grids. Intl J. Heat Fluid Flow 8, 8292.Google Scholar
Roach, P. E. & Brierly, D. H. 1992 The influence of a turbulent freestream on zero pressure gradient transitional boundary layer development, part I: test cases T3A and T3B. In ERCOFTAC Workshop: Numerical Simulation of Unsteady Flows and Transition to Turbulence, Lausanne, pp. 319347. Cambridge University Press.Google Scholar
Saric, W. S., Reed, H. L. & Kerschen, E. J. 2002 Boundary-layer receptivity to freestream disturbances. Annu. Rev. Fluid Mech. 34, 291319.Google Scholar
Schlatter, P., Brandt, L., de Lange, H. C. & Henningson, D. S. 2008 On streak breakdown in bypass transition. Phys. Fluids 20, 101505.CrossRefGoogle Scholar
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows. Springer.CrossRefGoogle Scholar
Singer, B. A. 1996 Characteristics of a young turbulent spot. Phys. Fluids 8, 509521.Google Scholar
Vaughan, N. J. & Zaki, T. A. 2011 Stability of zero-pressure-gradient boundary layer distorted by unsteady Klebanoff streaks. J. Fluid Mech. 681, 116153.Google Scholar
Watmuff, J. H. 2006 Effects of weak free stream nonuniformity on boundary layer transition. Trans. ASME J. Fluids Engng 128, 247257.CrossRefGoogle Scholar
Westin, K. J. A., Boiko, A. V., Klingmann, B. G. G., Kozlov, V. V. & Alfredsson, P. H. 1994 Experiments in a boundary layer subjected to free stream turbulence. Part 1. Boundary layer structure and receptivity. J. Fluid Mech. 281, 193218.CrossRefGoogle Scholar
Yavuzkurt, S. 1984 A guide to uncertainty analysis of hot-wire data. Trans. ASME J. Fluids Engng 106, 181186.CrossRefGoogle Scholar
Zaki, T. A. & Durbin, P. A. 2005 Mode interaction and the bypass route to transition. J. Fluid Mech. 531, 85111.CrossRefGoogle Scholar
Zaki, T. A. & Saha, S. 2009 On shear sheltering and the structure of vortical modes in single- and two-fluid boundary layers. J. Fluid Mech. 626, 111147.CrossRefGoogle Scholar