Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T11:46:33.583Z Has data issue: false hasContentIssue false

Faraday pilot-wave dynamics in a circular corral

Published online by Cambridge University Press:  18 March 2020

Matthew Durey*
Affiliation:
Department of Mathematical Sciences, University of Bath, BathBA2 7AY, UK Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA02139, USA
Paul A. Milewski
Affiliation:
Department of Mathematical Sciences, University of Bath, BathBA2 7AY, UK
Zhan Wang
Affiliation:
Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, Beijing100190, PR China
*
Email address for correspondence: mdurey@mit.edu

Abstract

A millimetric droplet of silicone oil may bounce and self-propel on the free surface of a vertically vibrating fluid bath due to the droplet’s interaction with its accompanying Faraday wave field. This hydrodynamic pilot-wave system exhibits many dynamics that were previously thought to be peculiar to the quantum realm. When the droplet is confined to a circular cavity, referred to as a ‘corral’, a range of dynamics may occur depending on the details of the geometry and the decay time of the subcritical Faraday waves. We herein present a theoretical investigation into the behaviour of subcritical Faraday waves in this geometry and explore the accompanying pilot-wave dynamics. By computing the Dirichlet-to-Neumann map for the velocity potential in the corral geometry, we can evolve the quasi-potential flow between successive droplet impacts, which, when coupled with a simplified model for the droplet’s vertical motion, allows us to derive and implement a highly efficient discrete-time iterative map for the pilot-wave system. We study the onset of the Faraday instability, the emergence and quantisation of circular orbits and simulate the exotic dynamics that arises in smaller corrals.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, A., Madsen, J., Reichelt, C., Rosenlund Ahl, S., Lautrup, B., Ellegaard, C., Levinsen, M. T. & Bohr, T. 2015 Double-slit experiment with single wave-driven particles and its relation to quantum mechanics. Phys. Rev. E 92, 013006.Google ScholarPubMed
Arbelaiz, J., Oza, A. U. & Bush, J. W. M. 2018 Promenading pairs of walking droplets: dynamics and stability. Phys. Rev. Fluids 3, 013604.CrossRefGoogle Scholar
Blanchette, F. 2016 Modeling the vertical motion of drops bouncing on a bounded fluid reservoir. Phys. Fluids 28, 032104.CrossRefGoogle Scholar
Bush, J. W. M. 2015 Pilot-wave hydrodynamics. Annu. Rev. Fluid Mech. 47, 269292.CrossRefGoogle Scholar
Cerda, E. A. & Tirapegui, E. L. 1998 Faraday’s instability in viscous fluid. J. Fluid Mech. 368, 195228.CrossRefGoogle Scholar
Couchman, M. M. P., Turton, S. E. & Bush, J. W. M. 2019 Bouncing phase variations in pilot-wave hydrodynamics and the stability of droplet pairs. J. Fluid Mech. 871, 212243.CrossRefGoogle Scholar
Couder, Y. & Fort, E. 2006 Single-particle diffraction and interference at a macroscopic scale. Phys. Rev. Lett. 97, 1541017.CrossRefGoogle Scholar
Couder, Y., Fort, E., Gautier, C.-H. & Boudaoud, A. 2005a From bouncing to floating: noncoalescence of drops on a fluid bath. Phys. Rev. Lett. 94, 177801.CrossRefGoogle Scholar
Couder, Y., Protière, S., Fort, E. & Boudaoud, A. 2005b Walking and orbiting droplets. Nature 437, 208.CrossRefGoogle Scholar
Cristea-Platon, T., Sáenz, P. J. & Bush, J. W. M. 2018 Walking droplets in a circular corral: quantisation and chaos. Chaos 28, 096116.CrossRefGoogle Scholar
Damiano, A. P., Brun, P.-T., Harris, D. M., Galeano-Rios, C. A. & Bush, J. W. M. 2016 Surface topography measurements of the bouncing droplet experiment. Exp. Fluids 57 (163), 17.Google Scholar
Dias, F., Dyachenko, A. I. & Zakharov, V. E. 2008 Theory of weakly damped free-surface flows: a new formulation based on potential flow solutions. Phys. Lett. A 372, 12971302.CrossRefGoogle Scholar
Dubertrand, R., Hubert, M., Schlagheck, P., Vandewalle, N., Bastin, T. & Martin, J. 2016 Scattering theory of walking droplets in the presence of obstacles. New J. Phys. 18, 113037.Google Scholar
Durey, M. & Milewski, P. A. 2017 Faraday wave-droplet dynamics: discrete-time analysis. J. Fluid Mech. 821, 296329.CrossRefGoogle Scholar
Durey, M., Milewski, P. A. & Bush, J. W. M. 2018 Dynamics, emergent statistics, and the mean-pilot-wave potential of walking droplets. Chaos 28, 096108.CrossRefGoogle ScholarPubMed
Dutykh, D. & Dias, F. 2007 Viscous potential free-surface flows in a fluid layer of finite depth. C. R. Acad. Sci. Paris I 345, 113118.CrossRefGoogle Scholar
Eddi, A., Fort, E., Moisy, F. & Couder, Y. 2009 Unpredictable tunneling of a classical wave–particle association. Phys. Rev. Lett. 102, 240401.CrossRefGoogle ScholarPubMed
Eddi, A., Sultan, E., Moukhtar, J., Fort, E., Rossi, M. & Couder, Y. 2011 Information stored in Faraday waves: the origin of a path memory. J. Fluid Mech. 674, 433463.CrossRefGoogle Scholar
Faria, L. M. 2017 A model for Faraday pilot waves over variable topography. J. Fluid Mech. 811, 5166.CrossRefGoogle Scholar
Filoux, B., Hubert, M., Schlagheck, P. & Vandewalle, N. 2017 Walking droplets in linear channels. Phys. Rev. Fluids 2, 013601.CrossRefGoogle Scholar
Filoux, B., Hubert, M. & Vandewalle, N. 2015 Strings of droplets propelled by coherent waves. Phys. Rev. E 92, 041004(R).Google ScholarPubMed
Fort, E., Eddi, A., Boudaoud, A., Moukhtar, J. & Couder, Y. 2010 Path-memory induced quantization of classical orbits. Proc. Natl Acad. Sci. USA 107 (41), 1751517520.CrossRefGoogle Scholar
Galeano-Rios, C. A., Couchman, M. M. P. & Bush, J. W. M. 2018 Ratcheting droplet pairs. Chaos 28, 096112.CrossRefGoogle ScholarPubMed
Galeano-Rios, C. A., Milewski, P. A. & Vanden-Broeck, J.-M. 2017 Non-wetting impact of a sphere onto a bath and its application to bouncing droplets. J. Fluid Mech. 826, 97127.CrossRefGoogle Scholar
Galeano-Rios, C. A., Milewski, P. A. & Vanden-Broeck, J.-M. 2019 Quasi-normal free-surface impacts, capillary rebounds and application to Faraday walkers. J. Fluid Mech. 873, 856888.CrossRefGoogle Scholar
Gilet, T. 2016 Quantumlike statistics of deterministic wave–particle interactions in a circular cavity. Phys. Rev. E 93, 042202.Google Scholar
Harris, D. M.2015 The pilot-wave dynamics of walking droplets in confinement. PhD thesis, Massachusetts Institute of Technology.Google Scholar
Harris, D. M., Brun, P.-T., Damiano, A., Faria, L. M. & Bush, J. W. M. 2018 The interaction of a walking droplet and a submerged pillar: from scattering to the logarithmic spiral. Chaos 28, 096105.CrossRefGoogle Scholar
Harris, D. M. & Bush, J. W. M. 2014 Droplets walking in a rotating frame: from quantized orbits to multimodal statistics. J. Fluid Mech. 739, 444464.CrossRefGoogle Scholar
Harris, D. M., Moukhtar, J., Fort, E., Couder, Y. & Bush, J. W. M. 2013 Wavelike statistics from pilot-wave dynamics in a circular corral. Phys. Rev. E 88, 011001.Google Scholar
Kahouadji, L., Périnet, N., Tuckerman, L. S., Shin, S., Chergui, J. & Juric, D. 2015 Numerical simulation of supersquare patterns in Faraday waves. J. Fluid Mech. 772, R2.CrossRefGoogle Scholar
Kumar, K. 1996 Linear theory of Faraday instability in viscous fluids. Proc. R. Soc. Lond. A 452, 11131126.Google Scholar
Kumar, K. & Tuckerman, L. S. 1994 Parametric instability of the interface between two fluids. J. Fluid Mech. 279, 4968.CrossRefGoogle Scholar
Kurianski, K. M., Oza, A. U. & Bush, J. W. M. 2017 Simulations of pilot-wave dynamics in a simple harmonic potential. Phys. Rev. Fluids 2, 113602.CrossRefGoogle Scholar
Labousse, M., Oza, A. U., Perrard, S. & Bush, J. W. M. 2016a Pilot-wave dynamics in a harmonic potential: quantization and stability of circular orbits. Phys. Rev. E 93, 033122.Google Scholar
Labousse, M., Perrard, S., Couder, Y. & Fort, E. 2014 Build-up of macroscopic eigenstates in a memory-based constrained system. New J. Phys. 16, 113027.Google Scholar
Labousse, M., Perrard, S., Couder, Y. & Fort, E. 2016b Self-attraction into spinning eigenstates of a mobile wave source by its emission back-reaction. Phys. Rev. E 94, 042224.Google Scholar
Milewski, P. A., Galeano-Rios, C. A., Nachbin, A. & Bush, J. W. M. 2015 Faraday pilot-wave dynamics: modelling and computation. J. Fluid Mech. 778, 361388.CrossRefGoogle Scholar
Moláček, J. & Bush, J. W. M. 2013 Drops walking on a vibrating bath: towards a hydrodynamic pilot-wave theory. J. Fluid Mech. 727, 612647.CrossRefGoogle Scholar
Müller, H. W., Wittmer, H., Wagner, C., Albers, J. & Knoor, K. 1997 Analytic stability theory for Faraday waves and the observation of the harmonic surface response. Phys. Rev. Lett. 78 (12), 2357.CrossRefGoogle Scholar
Nachbin, A. 2018 Walking droplets correlated at a distance. Chaos 28, 096110.CrossRefGoogle ScholarPubMed
Nachbin, A., Milewski, P. A. & Bush, J. W. M. 2017 Tunneling with a hydrodynamic pilot-wave model. Phys. Rev. Fluids 2, 034801.CrossRefGoogle Scholar
Oza, A. U., Harris, D. M., Rosales, R. R. & Bush, J. W. M. 2014 Pilot-wave dynamics in a rotating frame: on the emergence of orbital quantization. J. Fluid Mech. 744, 404429.CrossRefGoogle Scholar
Oza, A. U., Rosales, R. R. & Bush, J. W. M. 2013 A trajectory equation for walking droplets: hydrodynamic pilot-wave theory. J. Fluid Mech. 737, 552570.CrossRefGoogle Scholar
Oza, A. U., Rosales, R. R. & Bush, J. W. M. 2018 Hydrodynamic spin states. Chaos 28, 096106.CrossRefGoogle ScholarPubMed
Oza, A. U., Siéfert, E., Harris, D. M., Moláček, J. & Bush, J. W. M. 2017 Orbiting pairs of walking droplets: dynamics and stability. Phys. Rev. Fluids 2, 053601.CrossRefGoogle Scholar
Périnet, N., Juric, D. & Tuckerman, L. S. 2009 Numerical simulation of Faraday waves. J. Fluid Mech. 635, 126.CrossRefGoogle Scholar
Perrard, S., Labousse, M., Fort, E. & Couder, Y. 2014a Chaos driven by interfering memory. Phys. Rev. Lett. 113, 104101.CrossRefGoogle Scholar
Perrard, S., Labousse, M., Miskin, M., Fort, E. & Couder, Y. 2014b Self-organization into quantized eigenstates of a classical wave-driven particle. Nat. Commun. 5, 3219.CrossRefGoogle Scholar
Protière, S., Boudaoud, A. & Couder, Y. 2006 Particle–wave association on a fluid interface. J. Fluid Mech. 554, 85108.CrossRefGoogle Scholar
Protière, S., Couder, Y., Fort, E. & Boudaoud, A. 2005 The self-organization of capillary wave sources. J. Phys.: Condens. Matter 17, 35293535.Google Scholar
Pucci, G., Harris, D. M., Faria, L. M. & Bush, J. W. M. 2017 Walking droplets interacting with single and double slits. J. Fluid Mech. 835, 11361156.CrossRefGoogle Scholar
Pucci, G., Sáenz, P. J., Faria, L. M. & Bush, J. W. M. 2016 Non-specular reflection of walking droplets. J. Fluid Mech. 804, R3.CrossRefGoogle Scholar
Sáenz, P. J., Cristea-Platon, T. & Bush, J. W. M. 2018 Statistical projection effects in a hydrodynamic pilot-wave system. Nat. Phys. 14, 315319.CrossRefGoogle Scholar
Sáenz, P. J., Pucci, G., Goujon, A., Cristea-Platon, T. & Bush, J. W. M. 2018 Spin lattices of walking droplets. Phys. Rev. Fluids 3, 100508.CrossRefGoogle Scholar
Skeldon, A. & Rucklidge, A. 2015 Can weakly nonlinear theory explain Faraday wave patterns near onset? J. Fluid Mech. 777, 604632.CrossRefGoogle Scholar
Tambasco, L. D. & Bush, J. W. M. 2018 Exploring orbital dynamics and trapping with a generalized pilot-wave framework. Chaos 28, 096115.CrossRefGoogle ScholarPubMed
Thomson, S. J., Couchman, M. M. P. & Bush, J. W. M. 2020 Collective vibrations of confined levitating droplets. Phys. Rev. Lett. (submitted).Google Scholar
Wind-Willassen, Ø., Moláček, J., Harris, D. M. & Bush, J. W. M. 2013 Exotic states of bouncing and walking droplets. Phys. Fluids 25, 082002.CrossRefGoogle Scholar
Supplementary material: File

Durey et al. supplementary material

Durey et al. supplementary material

Download Durey et al. supplementary material(File)
File 449.8 KB