Article contents
Faxén form of time-domain force on a sphere in unsteady spatially varying viscous compressible flows
Published online by Cambridge University Press: 06 March 2017
Abstract
An explicit expression for the time-dependent force on a stationary, finite-sized spherical particle located in an unsteady inhomogeneous ambient flow is presented. The force expression accounts for both viscous and compressible effects. Towards this end, a time-harmonic plane travelling wave of a given frequency propagating in a viscous compressible flow over a sphere is considered. Linearized compressible Navier–Stokes equations are solved to obtain an analytical expression for the force exerted on the particle in the frequency domain. The force obtained in the Laplace space due to a travelling wave of a given frequency and wavenumber is then generalized to any arbitrary incoming flow. This is achieved by relating the radial and tangential velocity components in the Laplace space to the surface-averaged radial velocity and volume-averaged velocity vectors respectively in the time space. Moreover an expression relating the surface-averaged radial velocity and volume-averaged velocity vector has been provided. The total force is written as a summation of the undisturbed and disturbed force (quasi-steady, inviscid-unsteady and viscous-unsteady) contributions. The force contributions thus obtained are expressed as comprising of two parts – that arising due to spatial variation in the ambient flow and the other arising due to temporal variation. The current formulation is applicable to inhomogeneous ambient flows, however in the limit of negligible Reynolds and Mach numbers. The results are applicable even for particles of sizes larger than the acoustic wavelength. The accuracy of the explicit time-domain force expression is first tested by computing the force on an 80 mm diameter particle due to a weak planar expansion fan. Extension of this formulation when nonlinear effects become important is also proposed and tested by considering strong expansion fans. The results thus obtained are compared against corresponding axisymmetric numerical simulations.
- Type
- Papers
- Information
- Copyright
- © 2017 Cambridge University Press
References
- 31
- Cited by