Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T01:59:16.838Z Has data issue: false hasContentIssue false

Feedback control of vortex shedding using a resolvent-based modelling approach

Published online by Cambridge University Press:  17 June 2020

Bo Jin*
Affiliation:
Department of Mechanical Engineering, University of Melbourne, VIC3010, Australia
Simon J. Illingworth
Affiliation:
Department of Mechanical Engineering, University of Melbourne, VIC3010, Australia
Richard D. Sandberg
Affiliation:
Department of Mechanical Engineering, University of Melbourne, VIC3010, Australia
*
Email address for correspondence: bjin1@student.unimelb.edu.au

Abstract

An investigation of optimal feedback controllers’ performance and robustness is carried out for vortex shedding behind a two-dimensional cylinder at low Reynolds numbers. To facilitate controller design, we present an efficient modelling approach in which we utilise the resolvent operator to recast the linearised Navier–Stokes equations into an input–output form from which frequency responses can be computed. The difficulty of applying modern control design techniques to high-dimensional flow systems is overcome by using low-order models identified from frequency responses. These low-order models are used to design optimal controllers using ${\mathcal{H}}_{\infty }$ loop shaping. Two distinct single-input single-output control arrangements are considered. In the first arrangement, a velocity sensor located in the wake drives a pair of body forces near the cylinder. Complete suppression of shedding is observed up to $Re=110$. Due to the convective nature of vortex shedding and the corresponding time delays, we observe a fundamental trade-off: the sensor should be close enough to the cylinder to avoid excessive time lag, but it should be kept sufficiently far from the cylinder to measure unstable modes developing downstream. These two conflicting requirements become more difficult to satisfy for larger Reynolds numbers. In the second arrangement, we consider a practical set-up with an actuator that oscillates the cylinder according to the lift measurement. The system is stabilised up to $Re=100$, and we demonstrate why the performance of the resulting feedback controllers deteriorates more rapidly with increasing Reynolds number. The challenges of designing robust controllers for each control set-up are also analysed and discussed.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahuja, S. & Rowley, C. W. 2010 Feedback control of unstable steady states of flow past a flat plate using reduced-order estimators. J. Fluid Mech. 645, 447478.CrossRefGoogle Scholar
Åkervik, E., Hœpffner, J., Ehrenstein, U. W. E. & Henningson, D. S. 2007 Optimal growth, model reduction and control in a separated boundary-layer flow using global eigenmodes. J. Fluid Mech. 579, 305314.CrossRefGoogle Scholar
Amestoy, P. R., Duff, I. S., Koster, J. & L’Excellent, J. Y. 2001 A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Applics. 23 (1), 1541.CrossRefGoogle Scholar
Amestoy, P. R., Guermouche, A., L’Excellent, J. Y. & Pralet, S. 2006 Hybrid scheduling for the parallel solution of linear systems. Parallel Comput. 32 (2), 136156.CrossRefGoogle Scholar
Aubry, N., Holmes, P., Lumley, J. L. & Stone, E. 1988 The dynamics of coherent structures in the wall region of a turbulent boundary layer. J. Fluid Mech. 192, 115173.CrossRefGoogle Scholar
Bagheri, S., Henningson, D. S., Hoepffner, J. & Schmid, P. J. 2009 Input-output analysis and control design applied to a linear model of spatially developing flows. Appl. Mech. Rev. 62 (2), 020803.Google Scholar
Barkley, D. 2006 Linear analysis of the cylinder wake mean flow. Eur. Phys. Lett. 75 (5), 750756.CrossRefGoogle Scholar
Belson, B. A., Semeraro, O., Rowley, C. W. & Henningson, D. S. 2013 Feedback control of instabilities in the two-dimensional blasius boundary layer: the role of sensors and actuators. Phys. Fluids 25 (5), 054106.CrossRefGoogle Scholar
Brackston, R. D., De La Cruz, J. G., Wynn, A., Rigas, G. & Morrison, J. F. 2016 Stochastic modelling and feedback control of bistability in a turbulent bluff body wake. J. Fluid Mech. 802, 726749.CrossRefGoogle Scholar
Brackston, R. D., Wynn, A. & Morrison, J. F. 2018 Modelling and feedback control of vortex shedding for drag reduction of a turbulent bluff body wake. Intl J. Heat Fluid Flow 71, 127136.CrossRefGoogle Scholar
Chen, K. K. & Rowley, C. W. 2011 𝓗2 optimal actuator and sensor placement in the linearised complex Ginzburg–Landau system. J. Fluid Mech. 681, 241260.CrossRefGoogle Scholar
Choi, H., Jeon, W. P. & Kim, J. 2008 Control of flow over a bluff body. Annu. Rev. Fluid Mech. 40, 113139.CrossRefGoogle Scholar
Dahan, J. A., Morgans, A. S. & Lardeau, S. 2012 Feedback control for form-drag reduction on a bluff body with a blunt trailing edge. J. Fluid Mech. 704, 360387.CrossRefGoogle Scholar
Dalla Longa, L., Morgans, A. S. & Dahan, J. A. 2017 Reducing the pressure drag of a D-shaped bluff body using linear feedback control. Theor. Comput. Fluid Dyn. 31 (5-6), 567577.CrossRefGoogle Scholar
Deschrijver, D., Mrozowski, M., Dhaene, T. & De Zutter, D. 2008 Macromodeling of multiport systems using a fast implementation of the vector fitting method. IEEE Microw. Wirel. Compon. Lett. 18 (6), 383385.CrossRefGoogle Scholar
Dušek, J., Le Gal, P. & Fraunié, P. 1994 A numerical and theoretical study of the first Hopf bifurcation in a cylinder wake. J. Fluid Mech. 264, 5980.CrossRefGoogle Scholar
Flinois, T. L. & Morgans, A. S. 2016 Feedback control of unstable flows: a direct modelling approach using the eigensystem realisation algorithm. J. Fluid Mech. 793, 4178.CrossRefGoogle Scholar
Giannetti, F. & Luchini, P. 2007 Structural sensitivity of the first instability of the cylinder wake. J. Fluid Mech. 581, 167197.CrossRefGoogle Scholar
Gillies, E. A. 1998 Low-dimensional control of the circular cylinder wake. J. Fluid Mech. 371, 157178.CrossRefGoogle Scholar
Glover, K. & McFarlane, D. 1989 Robust stabilization of normalized coprime factor plant descriptions with h -bounded uncertainty. IEEE Trans. Autom. Control 34 (8), 821830.CrossRefGoogle Scholar
Gómez, F., Blackburn, H. M., Rudman, M., Sharma, A. S. & McKeon, B. J. 2016 A reduced-order model of three-dimensional unsteady flow in a cavity based on the resolvent operator. J. Fluid Mech. 798, R2.CrossRefGoogle Scholar
Gunzburger, M. D. & Lee, H. C. 1996 Feedback control of Karman vortex shedding. Trans. ASME J. Appl. Mech. 63 (3), 828835.CrossRefGoogle Scholar
Gustavsen, B. 2006 Improving the pole relocating properties of vector fitting. IEEE Trans. Power Deliv. 21 (3), 15871592.CrossRefGoogle Scholar
Gustavsen, B.2013 The vector fitting website, MATLAB code, 21. Available at: https://www.sintef.no/projectweb/vectorfitting/.Google Scholar
Gustavsen, B. & Semlyen, A. 1999 Rational approximation of frequency domain responses by vector fitting. IEEE Trans. Power Deliv. 14 (3), 10521061.CrossRefGoogle Scholar
Hoagg, J. B. & Bernstein, D. S. 2007 Nonminimum-phase zeros – much to do about nothing – classical control – revisited part II. IEEE Control Syst. Mag. 27 (3), 4557.CrossRefGoogle Scholar
Ilak, M. & Rowley, C. W. 2008 Modeling of transitional channel flow using balanced proper orthogonal decomposition. Phys. Fluids 20 (3), 034103.CrossRefGoogle Scholar
Illingworth, S. J. 2016 Model-based control of vortex shedding at low Reynolds numbers. Theor. Comput. Fluid Dyn. 30 (5), 429448.CrossRefGoogle Scholar
Jackson, C. P. 1987 A finite-element study of the onset of vortex shedding in flow past variously shaped bodies. J. Fluid Mech. 182, 2345.CrossRefGoogle Scholar
Juang, J. N. & Pappa, R. S. 1985 An eigensystem realization algorithm for modal parameter identification and model reduction. J. Guid. Control Dyn. 8 (5), 620627.CrossRefGoogle Scholar
Kim, J. & Bewley, T. R. 2007 A linear systems approach to flow control. Annu. Rev. Fluid Mech. 39, 383417.CrossRefGoogle Scholar
Leontini, J. S., Stewart, B. E., Thompson, M. C. & Hourigan, K. 2006 Wake state and energy transitions of an oscillating cylinder at low Reynolds number. Phys. Fluids 18 (6), 067101.CrossRefGoogle Scholar
Logg, A., Mardal, K. A. & Wells, G. 2012 Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book, vol. 84. Springer Science & Business Media.CrossRefGoogle Scholar
Ma, Z., Ahuja, S. & Rowley, C. W. 2011 Reduced-order models for control of fluids using the eigensystem realization algorithm. Theor. Comput. Fluid Dyn. 25 (1-4), 233247.CrossRefGoogle Scholar
McKeon, B. J. & Sharma, A. S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336382.CrossRefGoogle Scholar
Mortensen, M., Langtangen, H. P. & Wells, G. N. 2011 A fenics-based programming framework for modeling turbulent flow by the Reynolds-averaged Navier–Stokes equations. Adv. Water Resour. 34 (9), 10821101.CrossRefGoogle Scholar
Muddada, S. & Patnaik, B. S. V. 2010 An active flow control strategy for the suppression of vortex structures behind a circular cylinder. Eur. J. Mech. (B/Fluids) 29 (2), 93104.CrossRefGoogle Scholar
Nguyen, V. D., Jansson, J., Goude, A. & Hoffman, J. 2019 Direct finite element simulation of the turbulent flow past a vertical axis wind turbine. Renew. Energy 135, 238247.CrossRefGoogle Scholar
Oehler, S. F. & Illingworth, S. J. 2018 Sensor and actuator placement trade-offs for a linear model of spatially developing flows. J. Fluid Mech. 854, 3455.CrossRefGoogle Scholar
Park, D. S., Ladd, D. M. & Hendricks, E. W. 1994 Feedback control of von Kármán vortex shedding behind a circular cylinder at low Reynolds numbers. Phys. Fluids 6 (7), 23902405.CrossRefGoogle Scholar
Pier, B. 2002 On the frequency selection of finite-amplitude vortex shedding in the cylinder wake. J. Fluid Mech. 458, 407417.CrossRefGoogle Scholar
Provansal, M., Mathis, C. & Boyer, L. 1987 Bénard–von Kármán instability: transient and forced regimes. J. Fluid Mech. 182, 122.CrossRefGoogle Scholar
Roussopoulos, K. 1993 Feedback control of vortex shedding at low Reynolds numbers. J. Fluid Mech. 248, 267296.CrossRefGoogle Scholar
Rowley, C. W. 2005 Model reduction for fluids, using balanced proper orthogonal decomposition. Intl J. Bifurcation Chaos 15 (03), 9971013.CrossRefGoogle Scholar
Rowley, C. W. & Dawson, S. T. 2017 Model reduction for flow analysis and control. Annu. Rev. Fluid Mech. 49, 387417.CrossRefGoogle Scholar
Singh, S. N., Myatt, J. H., Addington, G. A., Banda, S. & Hall, J. K. 2001 Optimal feedback control of vortex shedding using proper orthogonal decomposition models. Trans. ASME J. Fluids Engng 123 (3), 612618.CrossRefGoogle Scholar
Sipp, D. & Marquet, O. 2013 Characterization of noise amplifiers with global singular modes: the case of the leading-edge flat-plate boundary layer. Theor. Comput. Fluid Dyn. 27 (5), 617635.CrossRefGoogle Scholar
Sipp, D., Marquet, O., Meliga, P. & Barbagallo, A. 2010 Dynamics and control of global instabilities in open-flows: a linearized approach. Appl. Mech. Rev. 63 (3), 030801.Google Scholar
Son, D. & Choi, H. 2018 Iterative feedback tuning of the proportional-integral-differential control of flow over a circular cylinder. IEEE Trans. Control Syst. Technol. 27 (4), 13851396.CrossRefGoogle Scholar
Son, D., Jeon, S. & Choi, H. 2011 A proportional–integral–differential control of flow over a circular cylinder. Phil. Trans. R. Soc. Lond. A 369 (1940), 15401555.CrossRefGoogle Scholar
Symon, S., Rosenberg, K., Dawson, S. T. & McKeon, B. J. 2018 Non-normality and classification of amplification mechanisms in stability and resolvent analysis. Phys. Rev. Fluids 3 (5), 053902.Google Scholar
Taira, K., Brunton, S. L., Dawson, S. T., Rowley, C. W., Colonius, T., McKeon, B. J., Schmidt, O. T., Gordeyev, S., Theofilis, V. & Ukeiley, L. S. 2017 Modal analysis of fluid flows: an overview. AIAA J. 55 (12), 40134041.CrossRefGoogle Scholar
Vasilyeva, M., Chung, E. T., Efendiev, Y. & Kim, J. 2019 Constrained energy minimization based upscaling for coupled flow and mechanics. J. Comput. Phys. 376, 660674.CrossRefGoogle Scholar
Williamson, C. H. K. 1996 Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28 (1), 477539.CrossRefGoogle Scholar
Yao, W. & Jaiman, R. K. 2017a Feedback control of unstable flow and vortex-induced vibration using the eigensystem realization algorithm. J. Fluid Mech. 827, 394414.CrossRefGoogle Scholar
Yao, W. & Jaiman, R. K. 2017b Model reduction and mechanism for the vortex-induced vibrations of bluff bodies. J. Fluid Mech. 827, 357393.CrossRefGoogle Scholar
Zebib, A. 1987 Stability of viscous flow past a circular cylinder. J. Engng Maths 21 (2), 155165.CrossRefGoogle Scholar
Zhang, M. M., Cheng, L. & Zhou, Y. 2004 Closed-loop-controlled vortex shedding and vibration of a flexibly supported square cylinder under different schemes. Phys. Fluids 16 (5), 14391448.CrossRefGoogle Scholar
Zhou, K., Doyle, J. C. & Glover, K. 1996 Robust and Optimal Control, vol. 40. Prentice Hall.Google Scholar