Published online by Cambridge University Press: 26 April 2006
The flows considered here are those where a container or confined region is being filled by a substantial flow of liquid. The case of especial interest is where the incoming flow fills a large part of the cross-section of the container, for example where a nearly full flowing conduit has one end suddenly closed and hence fills rapidly, or where a water wave propagates close to the under surface of a horizontal structure and then rapidly fills the available space. These flows are taken to be so rapid that gravity is unimportant and yet not so violent that compressibility effects become significant. Important features, such as the greatly enhanced pressures and a thin high-velocity return jet are evaluated. The calculated pressures are very significantly greater than those associated with the incoming flow velocity and can be especially large when there is little clearance between the flow and the container boundary. One of many possible applications is in the extension of cracks and openings in coastal cliffs and structures. The flows could also be relevant to estimating the forces on the underside of some marine structures. A simple two-dimensional irrotational free-surface solution is found for the flow, which is steady in a suitably moving frame of reference.
Reversing the direction of one of these filling flows gives the case of a narrow high-speed jet which may be used to flush liquid out of cavities and containers. The optimum size of jet is calculated.