No CrossRef data available.
Published online by Cambridge University Press: 26 April 2006
An inviscid laminar boundary layer flow Û(ŷ) with vertical thickness λy, and free stream velocity U is disturbed at time $\tcirc$ = 0 by a normal velocity $\vcirc$ and by a spanwise velocity ŵ([xcirc ],ŷ, $\zcirc$, 0) of finite amplitude αU, with spanwise ($\zcirc$) scale λz, and streamwise ([xcirc ]) scale λx = λz/α; the streamwise velocity û([xcirc ],ŷ,$\zcirc$,$\tcirc$) is initially undisturbed. A long wave λy/λz → 0) expansion of the Euler equations for fixed α and time scale $\tcirc$s = U−1λz/α results in a hyperbolic equation for Lagrangian displacements ŷ. Within the interval $\tcirc$ > $\tcirc$s of asymptotic validity, finite parcel displacements (O(λy)) with finite (O(U)) û fluctuations occur, independent of α no matter how small; the basic flow Û is therefore said to be unstable to streaky (λx [Gt ] λz) spanwise perturbations. The temporal development of the ('spot’) region in the (x,z) plane wherein inflected û profiles appear is computed and qualitatively related to observations of ‘breakdown’ and transition to turbulence in the flow over a flat plate. The maximum $\vcirc$([xcirc ],ŷ,$\zcirc$,$\tcirc$) increases monotonically to infinity as $\tcirc$ → $\tcirc$s.