Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T13:18:09.520Z Has data issue: false hasContentIssue false

Flapping propulsion using a fin ray

Published online by Cambridge University Press:  21 December 2011

S. Alben*
Affiliation:
School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA
*
Email address for correspondence: alben@math.gatech.edu

Abstract

We calculate optimal driving motions for a fin ray in a two-dimensional inviscid fluid, which is a model for caudal fin locomotion. The driving is sinusoidal in time, and consists of heaving, pitching and a less-studied motion called ‘shifting’. The optimal phases of shifting relative to heaving and pitching for maximum thrust power and efficiency are calculated. The optimal phases undergo jumps at resonant combinations of fin ray bending and shear moduli, and are nearly constant in regions between resonances. In two examples, pitching- and heaving-based motions converge with the addition of optimal shifting. Shifting provides an order-one increase in output power and efficiency.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Akhtar, I., Mittal, R., Lauder, G. V. & Drucker, E. 2007 Hydrodynamics of a biologically inspired tandem flapping foil configuration. Theor. Comput. Fluid Dyn. 21 (3), 155170.CrossRefGoogle Scholar
2. Alben, S. 2008 Optimal flexibility of a flapping appendage at high Reynolds number. J. Fluid Mech. 614, 355380.CrossRefGoogle Scholar
3. Alben, S. 2009a On the swimming of a flexible body in a vortex street. J. Fluid Mech. 635, 2745.CrossRefGoogle Scholar
4. Alben, S. 2009b Passive and active bodies in vortex–street wakes. J. Fluid Mech. 642, 95125.CrossRefGoogle Scholar
5. Alben, S. 2009c Simulating the dynamics of flexible bodies and vortex sheets. J. Comput. Phys. 228 (7), 25872603.CrossRefGoogle Scholar
6. Alben, S., Madden, P. G. & Lauder, G. V. 2007 The mechanics of active fin-shape control in ray-finned fishes. J. Roy. Soc. Interface 4 (13), 243256.CrossRefGoogle ScholarPubMed
7. Alben, S. & McGee, R. L. 2010 Optimizing a fin ray for stiffness. J. Mech. Phys. Solids 58 (5), 656664.CrossRefGoogle Scholar
8. Alben, S., Witt, C., Baker, T. V., Anderson, E. & Lauder, G. V. 2011 Dynamics of freely swimming flexible foils. Phys. Fluids (submitted).CrossRefGoogle Scholar
9. Cheng, J.-Y., Pedley, T. J. & Altringham, J. D. 1998 A continuous dynamic beam model for swimming fish. Phil. Trans. R. Soc. Lond. B 353, 981997.CrossRefGoogle Scholar
10. Eldredge, J. D., Toomey, J. & Medina, A. 2010 On the roles of chord-wise flexibility in a flapping wing with hovering kinematics. J. Fluid Mech. 659, 94115.CrossRefGoogle Scholar
11. Katz, J. & Weihs, D. 1978 Hydrodynamic propulsion by large amplitude oscillation of an aerofoil with chordwise flexibility. J. Fluid Mech. 88 (3), 485497.CrossRefGoogle Scholar
12. Lauder, G. V. 1989 Caudal fin locomotion in ray-finned fishes: historical and functional analyses. Am. Zool. 29 (1), 85.CrossRefGoogle Scholar
13. Lauder, G. V., Anderson, E. J., Tangorra, J. & Madden, P. G. 2007 Fish biorobotics: kinematics and hydrodynamics of self-propulsion. J. Expl Biol. 210 (Pt 16), 2767.CrossRefGoogle ScholarPubMed
14. Lauder, G. V. & Madden, P. G. A. 2007 Fish locomotion: kinematics and hydrodynamics of flexible foil-like fins. Exp. Fluids 43 (5), 641653.CrossRefGoogle Scholar
15. Lighthill, MJ 1970 Aquatic animal propulsion of high hydromechanical efficiency. J. Fluid Mech. 44 (02), 265301.CrossRefGoogle Scholar
16. Michelin, S. & Smith, S. G. L. 2009 Resonance and propulsion performance of a heaving flexible wing. Phys. Fluids 21, 071902.CrossRefGoogle Scholar
17. Miller, L. A. & Peskin, C. S. 2009 Flexible clap and fling in tiny insect flight. J. Expl Biol. 212 (19), 3076.CrossRefGoogle ScholarPubMed
18. Mittal, R. 2004 Computational modelling in biohydrodynamics: trends, challenges, and recent advances. IEEE J. Ocean. Engng 29 (3), 595604.CrossRefGoogle Scholar
19. Paidoussis, M. P. 1998 Fluid–Structure Interactions, Vol 2: Slender Structures and Axial Flow. Academic Press Inc.Google Scholar
20. Pedley, T. J. & Hill, S. J. 1999 Large-amplitude undulatory fish swimming: fluid mechanics coupled to internal mechanics. J. Expl Biol. 202, 34313438.CrossRefGoogle ScholarPubMed
21. Prempraneerach, P., Hover, F. S. & Triantafyllou, M. S. 2003 The effect of chordwise flexibility on the thrust and efficiency of a flapping foil. In International Symposium on Unmanned Untethered Submersible Technology, University of New Hampshire, Durham, NH.Google Scholar
22. Schultz, W. et al. 2002 Power requirements of swimming: do new methods resolve old questions? Integr. Compar. Biol. 42 (5), 1018.CrossRefGoogle ScholarPubMed
23. Shelley, M. J. & Zhang, J. 2011 Flapping and bending bodies interacting with fluid flows. Annu. Rev. Fluid Mech. 43, 449465.CrossRefGoogle Scholar
24. Tangorra, J., Anquetil, P., Fofonoff, T., Chen, A., Del Zio, M. & Hunter, I. 2007 The application of conducting polymers to a biorobotic fin propulsor. Bioinspir. Biomimet. 2, S6.CrossRefGoogle ScholarPubMed
25. Videler, J. J. 1993 Fish Swimming. Springer.CrossRefGoogle Scholar
26. Wang, Z. J. 2005 Dissecting insect flight. Annu. Rev. Fluid Mech. 37, 183210.CrossRefGoogle Scholar
27. Wu, T. 1971 Hydromechanics of swimming propulsion. Part 2. Some optimum shape problems. J. Fluid Mech. 46 (03), 521544.CrossRefGoogle Scholar
28. Zhu, Q. & Shoele, K. 2008 Propulsion performance of a skeleton-strengthened fin. J. Expl Biol. 211 (Pt 13), 2087.CrossRefGoogle ScholarPubMed