Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T13:32:42.386Z Has data issue: false hasContentIssue false

Flow in a differentially rotated cylindrical drop at low Reynolds number

Published online by Cambridge University Press:  20 April 2006

George M. Harriott
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Robert A. Brown
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Abstract

A liquid drop held captive between parallel disks that are differentially rotated is a model for the swirling flows induced by crystal rotation in the floating-zone process for growing semiconductor materials. An asymptotic analysis for a cylindrical drop is presented that elucidates the structure of the axisymmetric cellular motions caused by disk rotation at low Reynolds number. Variations of meniscus shape induced by these flows are described in the limit of small capillary number. Most cellular flow fields break the bifurcation point that corresponds to the Plateau–Rayleigh limit for the length of a static drop into two disjoint shape families and lower the maximum stable drop length. This effect is studied by a singular bifurcation analysis.

Type
Research Article
Copyright
© 1983 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boucher, E. A. & Evans, M. J. B. 1980 Capillary phenomena XII. Properties of fluid bridges between solids in a gravitational field J. Colloid Interface Sci. 75, 409418.Google Scholar
Brown, R. A. & Scriven, L. E. 1980 The shape and stability of rotating captive drops. Phil. Trans. R. Soc. Lond A 297, 5179.Google Scholar
Burton, J. A., Prim, R. C. & Slichter, W. P. 1953 The distribution of solute in crystals grown from the melt J. Chem. Phys. 21, 19871991.Google Scholar
Carruthers, J. R. & Grasso, M. 1972 Studies of floating zones in simulated zero gravity J. Appl. Phys. 43, 436443.Google Scholar
Cochran, W. G. 1934 The flow due to a rotating disk Proc. Camb. Phil. Soc. 30, 365375.Google Scholar
Coriell, S. R., Hardy, S. C. & Cordes, M. R. 1977 Stability of liquid zones J. Colloid Interface Sci. 60, 126136.Google Scholar
Fowle, A. A., Soto, L., Strong, P. F. & Wang, C. A. 1980 Experimental and flow characteristics of floating liquid columns confined between rotating disks. Final report to NASA, Washington, D.C., Contract no. NASW-3186 by Arthur D. Little, Feb. 1980.
Gibbs, J. W. 1906 In Scientific Papers, Vol. 1, Dover.
Harriott, G. M. & Brown, R. A. 1982 Flow in a differentially rotated cylindrical drop at moderate Reynolds number. (Unpublished manuscript.)
Heywang, W. von 1956 Zur Stabilität senkrechter Schmelzzonen. Z. Naturforschung 11a, 238243.Google Scholar
Looss, G. & Joseph, D. D. 1980 Elementary Stability and Bifurcation Theory. Springer.
Joseph, D. D. 1973 Domain perturbations: the higher-order theory of infinitesimal water waves. Arch. Rat. Mech. Anal. 51, 295303.Google Scholar
Joseph, D. D. 1975 Slow motion and viscometric motion Arch. Rat. Mech. Anal. 56, 99157.Google Scholar
KáRMáN, TH. VON 1921 über laminare und turbulente Reibung Z. angew. Math. Mech. 1, 233251.Google Scholar
Keller, W. & Muhlbauer, A. 1981 Floating Zone Silicon. Marcel-Dekker.
Lawal, A. & Brown, R. A. 1982 The stability of an inclined pendent drop. J. Colloid Interface Sci. (in press).Google Scholar
Mason, G. J. 1970 An experimental determination of the stable length of cylindrical liquid bubbles J. Colloid Interface Sci. 32, 172176.Google Scholar
Matkowsky, B. J. & Reiss, E. L. 1977 Singular perturbations of bifurcations SIAM J. Appl. Math. 33, 230255.Google Scholar
Pao, H.-P. 1970 A numerical computation of a confined rotating flow J. Appl. Mech. 37, 480487.Google Scholar
Pfann, W. G. 1966 Zone Melting, 2nd edn. Wiley.
Plateau, J. A. F. 1873 Statique Expérimental et Théorique des Liquides soumis aux seules forces moléculaires. Gauthier-Villars.
Rayleigh, J. W. S. 1879 On the capillary phenomena of jets Proc. R. Soc. Lond. 29, 7197.Google Scholar
Schultz-Grunow, F. 1935 Der Reibungswiderstand rotierenden Scheiben in Gehäusen Z. angew. Math. Mech. 15, 191204.Google Scholar
Ungar, L. H. & Brown, R. A. 1982 The dependence of the shape and stability of captive rotating drops on multiple parameters. Phil. Trans. R. Soc. Lond. (in the press).Google Scholar