Hostname: page-component-6bb9c88b65-spzww Total loading time: 0 Render date: 2025-07-17T20:56:17.312Z Has data issue: false hasContentIssue false

Flow-induced vibration of a cylinder subjected to proximity interference by a downstream-cylinder

Published online by Cambridge University Press:  16 July 2025

Abhishek
Affiliation:
Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
Atul Sharma*
Affiliation:
Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
Sandip Kumar Saha
Affiliation:
Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
*
Corresponding author: Atul Sharma, atulsharma@iitb.ac.in

Abstract

A numerical study is presented on flow-induced vibration of a circular cylinder, under the effect of a downstream stationary cylinder-induced proximity interference. The interference-induced various types of gap-flow regimes and characteristics of vibration and gap-flow rate $Q^*_g$ are presented, by considering various non-dimensional gaps $G^* = 0.1{-}2.5$ and reduced velocities $U^* = 3{-}20$ at a constant Reynolds number $Re = 100$, mass ratio $m^*= 2$ and damping ratio $\zeta = 0.005$. Decreasing $G^*$ or increasing proximity leads to the four gap-flow regimes: bi-directional gap flow at $G^* \geqslant 1.0$, uni-directional non-orthogonal gap flow at $G^* = 1.5{-}1.0$, uni-directional orthogonal gap flow at $G^* \leqslant 0.5$ and uni-directional one-sided gap flow at $G^* \leqslant 0.3$. Further, the respective regimes at larger $U^*$ are associated with proximity-induced modified vortex-induced vibration (PImVIV), proximity-induced galloping (PIG), transitional PImVIV–PIG, and proximity-induced staggered vibration (PISV). Quantitative presentation of maximum gap-flow rate $Q^*_{{g,max}}$, phase $ \phi _g$ (between $Q^*_{g}$ and displacement $y^*$) and phase portraits ($Q^*_{g}$ versus $y^*$) provides clear demarcation between the various gap-flow regimes. Flow mechanisms are presented for the PImVIV, PIG and PISV responses. For the PIG, the mechanism is presented for the first time on generation of galloping instability, asymptotically increasing $A^*$ and existence of optimum gap $G^* = 0.5$ for the maximum amplitude. This work is significant as it provides new insights into the proximity interference-induced gap-flow dynamics between two cylinders, associated flow mechanism for both vibration mitigation and enhancement and promising potential applications for energy harvesting.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abhishek, A., Saha, S.K. & Sharma, A. 2024 Splitter-plate proximity-induced transitions in flow-induced vibration of a triangular prism. Phys. Fluids 36 (6), 063606.10.1063/5.0204646CrossRefGoogle Scholar
Alam, M.M. & Meyer, J.P. 2013 Global aerodynamic instability of twin cylinders in cross flow. J. Fluids Struct. 41, 135145.10.1016/j.jfluidstructs.2013.03.007CrossRefGoogle Scholar
Allen, J. & Smits, A. 2001 Energy harvesting eel. J. Fluids Struct. 15 (3–4), 629640.10.1006/jfls.2000.0355CrossRefGoogle Scholar
Assi, G.R. 2014 Wake-induced vibration of tandem and staggered cylinders with two degrees of freedom. J. Fluids Struct. 50, 340357.10.1016/j.jfluidstructs.2014.07.002CrossRefGoogle Scholar
Assi, G.R. & Bearman, P.W. 2015 Transverse galloping of circular cylinders fitted with solid and slotted splitter plates. J. Fluids Struct. 54, 263280.10.1016/j.jfluidstructs.2014.11.005CrossRefGoogle Scholar
Bernitsas, M.M. 2016 Harvesting energy by flow included motions. In Springer Handbook of Ocean Engineering (ed. M.R Dhanak & N.I. Xiros), pp. 11631244. Springer Handbook of Ocean Engineering.10.1007/978-3-319-16649-0_47CrossRefGoogle Scholar
Blevins, R.D. 1977 Flow-Induced Vibration. Van Nostrand Reinhold Company.10.1115/1.3424205CrossRefGoogle Scholar
Bokaian, A. & Geoola, F. 1984 a Proximity-induced galloping of two interfering circular cylinders. J. Fluid Mech. 146, 417449.10.1017/S0022112084001932CrossRefGoogle Scholar
Bokaian, A. & Geoola, F. 1984 b Wake-induced galloping of two interfering circular cylinders. J. Fluid Mech. 146, 383415.10.1017/S0022112084001920CrossRefGoogle Scholar
Borazjani, I. & Sotiropoulos, F. 2009 Vortex-induced vibrations of two cylinders in tandem arrangement in the proximity–wake interference region. J. Fluid Mech. 621, 321364.10.1017/S0022112008004850CrossRefGoogle ScholarPubMed
Carmo, B.S., Sherwin, S.J., Bearman, P.W. & Willden, R. 2011 Flow-induced vibration of a circular cylinder subjected to wake interference at low Reynolds number. J. Fluids Struct. 27 (4), 503522.10.1016/j.jfluidstructs.2011.04.003CrossRefGoogle Scholar
Chen, W., Ji, C., Williams, J., Xu, D., Yang, L. & Cui, Y. 2018 Vortex-induced vibrations of three tandem cylinders in laminar cross-flow: vibration response and galloping mechanism. J. Fluids Struct. 78, 215238.10.1016/j.jfluidstructs.2017.12.017CrossRefGoogle Scholar
Ding, L., Zou, Q., Zhang, L. & Wang, H. 2018 Research on flow-induced vibration and energy harvesting of three circular cylinders with roughness strips in tandem. Energies 11 (11), 2977.10.3390/en11112977CrossRefGoogle Scholar
Garg, H., Soti, A.K. & Bhardwaj, R. 2019 Vortex-induced vibration and galloping of a circular cylinder in presence of cross-flow thermal buoyancy. Phys. Fluids 31 (11), 113603.10.1063/1.5122851CrossRefGoogle Scholar
Govardhan, R. & Williamson, C. 2000 Modes of vortex formation and frequency response of a freely vibrating cylinder. J. Fluid Mech. 420, 85130.10.1017/S0022112000001233CrossRefGoogle Scholar
Govardhan, R. & Williamson, C. 2002 Resonance forever: existence of a critical mass and an infinite regime of resonance in vortex-induced vibration. J. Fluid Mech. 473, 147166.10.1017/S0022112002002318CrossRefGoogle Scholar
Griffith, M.D., Jacono, D.L., Sheridan, J. & Leontini, J.S. 2017 Flow-induced vibration of two cylinders in tandem and staggered arrangements. J. Fluid Mech. 833, 98130.10.1017/jfm.2017.673CrossRefGoogle Scholar
Khalak, A. & Williamson, C.H. 1999 Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping. J. Fluids Struct. 13 (7–8), 813851.10.1006/jfls.1999.0236CrossRefGoogle Scholar
Kim, S., Alam, M.M., Sakamoto, H. & Zhou, Y. 2009 Flow-induced vibrations of two circular cylinders in tandem arrangement. Part 1: Characteristics of vibration. J. Wind Engng. Ind. Aerodyn. 97 (5–6), 304311.10.1016/j.jweia.2009.07.004CrossRefGoogle Scholar
Lee, K. & Yang, K.-S. 2009 Flow patterns past two circular cylinders in proximity. Comput. Fluids 38 (4), 778788.10.1016/j.compfluid.2008.07.005CrossRefGoogle Scholar
Lee, Y.J., Qi, Y., Zhou, G. & Lua, K.B. 2019 Vortex-induced vibration wind energy harvesting by piezoelectric MEMS device in formation. Sci. Rep. UK 9 (1), 20404.10.1038/s41598-019-56786-0CrossRefGoogle ScholarPubMed
Lin, C. & Alam, M.M. 2024 Intrinsic features of flow-induced stability of a square cylinder. J. Fluid Mech. 988, A50.10.1017/jfm.2024.445CrossRefGoogle Scholar
Meneghini, J.R., Saltara, F., Siqueira, C.d.L.R. & Ferrari, J. Jr 2001 Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements. J. Fluids Struct. 15 (2), 327350.10.1006/jfls.2000.0343CrossRefGoogle Scholar
Mittal, C., Abhishek, A. & Sharma, A. 2023 Vortex dynamics and flow-induced vibration of a rounded-square cylinder with a detached splitter plate. Phys. Fluids 35 (7), 073608.10.1063/5.0157142CrossRefGoogle Scholar
Mittal, C. & Sharma, A. 2021 Flow-induced vibration of a flexible splitter-plate in the wake of a stationary cylinder. Phys. Fluids 33 (11), 113607.10.1063/5.0071523CrossRefGoogle Scholar
Mittal, C. & Sharma, A. 2022 Flow-induced coupled vibrations of an elastically mounted cylinder and a detached flexible plate. J. Fluid Mech. 942, A57.10.1017/jfm.2022.406CrossRefGoogle Scholar
Nishi, Y., Ueno, Y., Nishio, M., Quadrante, L.A.R. & Kokubun, K. 2014 Power extraction using flow-induced vibration of a circular cylinder placed near another fixed cylinder. J. Sound Vib. 333 (10), 28632880.10.1016/j.jsv.2014.01.007CrossRefGoogle Scholar
Païdoussis, M.P., Price, S.J. & De Langre, E. 2010 Fluid-Structure Interactions: Cross-Flow-Induced Instabilities. Cambridge University Press.10.1017/CBO9780511760792CrossRefGoogle Scholar
Park, H., Kumar, R.A. & Bernitsas, M.M. 2013 Enhancement of flow-induced motion of rigid circular cylinder on springs by localized surface roughness at $3 \times 10^4 \geqslant re \leqslant 1.2 \times 10^5$ . Ocean Engng 72, 403415.10.1016/j.oceaneng.2013.06.026CrossRefGoogle Scholar
Prasanth, T. & Mittal, S. 2008 Vortex-induced vibrations of a circular cylinder at low Reynolds numbers. J. Fluid Mech. 594, 463491.10.1017/S0022112007009202CrossRefGoogle Scholar
Rostami, A.B. & Armandei, M. 2017 Renewable energy harvesting by vortex-induced motions: review and benchmarking of technologies. Renew. Sustain. Energy Rev. 70, 193214.10.1016/j.rser.2016.11.202CrossRefGoogle Scholar
Sahu, T.R., Furquan, M., Jaiswal, Y. & Mittal, S. 2019 Flow-induced vibration of a circular cylinder with rigid splitter plate. J. Fluids Struct. 89, 244256.10.1016/j.jfluidstructs.2019.03.015CrossRefGoogle Scholar
Sarpkaya, T. 2004 A critical review of the intrinsic nature of vortex-induced vibrations. J. Fluids Struct. 19 (4), 389447.10.1016/j.jfluidstructs.2004.02.005CrossRefGoogle Scholar
Sharma, A. 2022 Computational fluid dynamics: Physical law-based finite volume method. In Introduction to Computational Fluid Dynamics: Development, Application and Analysis, pp. 221237. Springer International Publishing.10.1007/978-3-030-72884-7_8CrossRefGoogle Scholar
Sharma, G. & Bhardwaj, R. 2023 Flow-induced vibrations of elastically coupled tandem cylinders. J. Fluid Mech. 976, A22.10.1017/jfm.2023.910CrossRefGoogle Scholar
Sharma, G., Garg, H. & Bhardwaj, R. 2022 Flow-induced vibrations of elastically-mounted c-and d-section cylinders. J. Fluids Struct. 109, 103501.10.1016/j.jfluidstructs.2022.103501CrossRefGoogle Scholar
Singh, S. & Mittal, S. 2005 Vortex-induced oscillations at low Reynolds numbers: Hysteresis and vortex-shedding modes. J. Fluids Struct. 20 (8), 10851104.10.1016/j.jfluidstructs.2005.05.011CrossRefGoogle Scholar
Soti, A.K., Zhao, J., Thompson, M.C., Sheridan, J. & Bhardwaj, R. 2018 Damping effects on vortex-induced vibration of a circular cylinder and implications for power extraction. J. Fluids Struct. 81, 289308.10.1016/j.jfluidstructs.2018.04.013CrossRefGoogle Scholar
Su, B., He, S., Zhang, M. & Feng, J. 2022 Experimental study on flow-induced vibration of a circular cylinder with a downstream square plate. Ocean Engng 247, 110768.10.1016/j.oceaneng.2022.110768CrossRefGoogle Scholar
Sumner, D. 2010 Two circular cylinders in cross-flow: a review. J. Fluids Struct. 26 (6), 849899.10.1016/j.jfluidstructs.2010.07.001CrossRefGoogle Scholar
Sun, H., Ma, C., Kim, E.S., Nowakowski, G., Mauer, E. & Bernitsas, M.M. 2019 Flow-induced vibration of tandem circular cylinders with selective roughness: effect of spacing, damping and stiffness. Eur. J. Mech. B/Fluids 74, 219241.10.1016/j.euromechflu.2018.10.024CrossRefGoogle Scholar
Tang, T., Zhu, H., Chen, Q., Zhong, J. & Gao, Y. 2023 Dynamic response of a circular cylinder in the presence of a detached splitter plate: on the gap distance sensitivity. J. Fluids Struct. 119, 103888.10.1016/j.jfluidstructs.2023.103888CrossRefGoogle Scholar
Thekkethil, N. & Sharma, A. 2019 Level set function–based immersed interface method and benchmark solutions for fluid flexible‐structure interaction. Intl J. Numer. Meth. Fluids 91 (3), 134157.10.1002/fld.4746CrossRefGoogle Scholar
Thekkethil, N. & Sharma, A. 2020 Hybrid lagrangian–eulerian method-based cfsd development, application, and analysis. In Immersed Boundary Method: Development and Applications (ed. S. Roy, A. De & E. Balaras), pp. 361394. Springer Singapore.10.1007/978-981-15-3940-4_14CrossRefGoogle Scholar
Thekkethil, N., Sharma, A. & Agrawal, A. 2018 Unified hydrodynamics study for various types of fishes-like undulating rigid hydrofoil in a free stream flow. Phys. Fluids 30 (7), 077107.10.1063/1.5041358CrossRefGoogle Scholar
Thekkethil, N., Sharma, A. & Agrawal, A. 2020 Self-propulsion of fishes-like undulating hydrofoil: a unified kinematics based unsteady hydrodynamics study. J. Fluids Struct. 93, 102875.10.1016/j.jfluidstructs.2020.102875CrossRefGoogle Scholar
Tong, F., Cheng, L. & Zhao, M. 2015 Numerical simulations of steady flow past two cylinders in staggered arrangements. J. Fluid Mech. 765, 114149.10.1017/jfm.2014.708CrossRefGoogle Scholar
Vicente-Ludlam, D., Barrero-Gil, A. & Velazquez, A. 2018 Flow-induced vibration control of a circular cylinder using rotational oscillation feedback. J. Fluid Mech. 847, 93118.10.1017/jfm.2018.332CrossRefGoogle Scholar
Williamson, C.H. & Govardhan, R. 2004 Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36 (1), 413455.10.1146/annurev.fluid.36.050802.122128CrossRefGoogle Scholar
Zdravkovich, M. 1981 Review and classification of various aerodynamic and hydrodynamic means for suppressing vortex shedding. J. Wind Eng. Ind. Aerodyn. 7 (2), 145189.10.1016/0167-6105(81)90036-2CrossRefGoogle Scholar
Zdravkovich, M. 1988 Review of interference-induced oscillations in flow past two parallel circular cylinders in various arrangements. J. Wind Eng. Ind. Aerodyn. 28 (1–3), 183199.10.1016/0167-6105(88)90115-8CrossRefGoogle Scholar
Zhao, J., Hourigan, K. & Thompson, M. 2018 Flow-induced vibration of d-section cylinders: an afterbody is not essential for vortex-induced vibration. J. Fluid Mech. 851, 317343.10.1017/jfm.2018.501CrossRefGoogle Scholar
Zhao, M. 2013 Flow induced vibration of two rigidly coupled circular cylinders in tandem and side-by-side arrangements at a low reynolds number of 150. Phys. Fluids 25 (12), 123601.10.1063/1.4832956CrossRefGoogle Scholar
Zhu, H., Li, G. & Wang, J. 2020 Flow-induced vibration of a circular cylinder with splitter plates placed upstream and downstream individually and simultaneously. Appl. Ocean Res. 97, 102084.10.1016/j.apor.2020.102084CrossRefGoogle Scholar