Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T13:50:55.523Z Has data issue: false hasContentIssue false

Flow-induced vibrations of a deformable ring

Published online by Cambridge University Press:  16 March 2010

KOUROSH SHOELE
Affiliation:
Department of Structural Engineering, University of California San Diego, La Jolla, CA 92093, USA
QIANG ZHU*
Affiliation:
Department of Structural Engineering, University of California San Diego, La Jolla, CA 92093, USA
*
Email address for correspondence: qizhu@ucsd.edu

Abstract

To understand flow-induced vibrations of deformable objects, we numerically investigate dynamics of a pressurized elastic ring pinned at one point within a uniform flow by using an immersed-boundary algorithm. The boundary of the ring consists of a fibre with no bending stiffness, which can be modelled as a linear spring with spring constant k and zero unstretched length. The vibration of the ring is decomposed into two parts: a pitching motion that includes a rigid-body rotation and a flexible bending motion in the transverse direction, and a tapping motion in the longitudinal direction. The pitching motion is dominated by the frequency of vortex shedding, whereas the primary frequency of the tapping motion is twice the frequency of vortex shedding. At the Reynolds number of 100, resonance is observed when k ~ 0.2 (k is normalized by the diameter of the undeformed ring, the speed of the upcoming flow and the fluid density). Across the resonance region, abrupt jumps in terms of the motion amplitudes as well as the hydrodynamic loads are recorded. Within the resonance region, the lift force demonstrates a beating phenomenon reminiscent of findings through reduced models and low-degree-of-freedom systems.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alben, S., Shelley, M. & Zhang, J. 2002 Drag reduction through self-similar bending of a flexible body. Nature 420, 479481.CrossRefGoogle ScholarPubMed
Alben, S., Shelley, M. & Zhang, J. 2004 How flexibility induces streamlining in a two-dimensional flow. Phys. Fluids 16, 16941713.CrossRefGoogle Scholar
Berger, E. & Wille, R. 1972 Periodic flow phenomena. Annu. Rev. Fluid Mech. 4, 313340.CrossRefGoogle Scholar
Connell, B. S. H. & Yue, K. K. P. 2007 Flapping dynamics of a flag in a uniform stream. J. Fluid Mech. 581, 3367.CrossRefGoogle Scholar
Cortez, R., Peskin, C. S., Stockie, J. M. & Varela, D. 2004 Parametric resonance in immersed elastic boundaries. SIAM J. Appl. Math. 65, 494520.CrossRefGoogle Scholar
Dahl, J. M., Hover, F. S., Triantafyllou, M. S, Dong, S. & Karniadakis, G. E. 2007 Resonant vibrations of bluff bodies cause multivortex shedding and high frequency forces. Phys. Rev. Lett. 99, 144503.CrossRefGoogle ScholarPubMed
Eldredge, J. D. & Pisani, D. 2008 Passive propulsion of a simple articulated system in the wake of an obstacle. J. Fluid Mech. 607, 279288.CrossRefGoogle Scholar
Engelman, M. S. & Jaminia, M. A. 1990 Transient flow past a circular cylinder: a benchmark solution. Intl J. Numer. Meth. Fluids 11, 9851000.CrossRefGoogle Scholar
Gresho, P. M., Chan, S. T., Lee, R. L. & Upson, C. D. 1984 A modified finite element method for solving the time-dependent, incompressible Navier–Stokes equations. Part 2. Applications. Intl J. Numer. Meth. Fluids 4, 619640.CrossRefGoogle Scholar
Hughes, T., Liu, W. & Zimmerman, T. 1981 Lagrangian–Eulerian finite element formulations for incompressible viscous flows. Comput. Meth. Appl. Mech. Engng 29, 329349.CrossRefGoogle Scholar
Jauvtis, N. & Williamson, C. H. K. 2004 The effect of two degrees of freedom on vortex-induced vibration at low mass and damping. J. Fluid Mech. 509 (1), 2362.CrossRefGoogle Scholar
Jung, S., Mareck, K., Shelley, M. & Zhang, J. 2006 Dynamics of a deformable body in a fast flowing soap film. Phys. Rev. Lett. 97, 134502.CrossRefGoogle Scholar
Karniadakis, G. E. & Triantafyllou, G. S. 1992 Three-dimensional dynamics and transition to turbulence in the wake of bluff objects. J. Fluid Mech. 238, 130.CrossRefGoogle Scholar
Kim, J., Kim, D. & Choi, H. 2001 An immersed-boundary finite-volume method for simulations of flow in complex geometries. J. Comput. Phys. 171, 132150.CrossRefGoogle Scholar
Lai, M. C. & Peskin, C. S. 2000 An immersed boundary method with formal second order accuracy and reduced numerical viscosity. J. Comput. Phys. 180, 705719.CrossRefGoogle Scholar
Liao, J. C., Beal, D. N., Lauder, G. V. & Triantafyllou, M. S. 2003 Fish exploiting vortices decrease muscle activity. Science 302, 15661569.CrossRefGoogle ScholarPubMed
Linnick, M. & Fasel, H. 2005 A high-order immersed interface method for simulating unsteady incompressible flows on irregular domains. J. Comput. Phys. 204, 157192.CrossRefGoogle Scholar
Liu, C., Zheng, X. & Sung, C. H. 1998 Preconditioned multigrid methods for unsteady incompressible flows. J. Comput. Phys. 139, 3557.CrossRefGoogle Scholar
Mohandas, N. & Evans, E. 1994 Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects. Annu. Rev. Biophys. Biomol. Struct. 23, 787818.CrossRefGoogle ScholarPubMed
Nayfeh, A. H. & Mook, D. T. 1979 Nonlinear Oscillations. Wiley.Google Scholar
Papaioannou, G. V., Yue, D. K. P., Triantafyllou, M. S. & Karniadakis, G. E. 2008 On the effect of spacing on the vortex-induced vibrations of two tandem cylinders. J. Fluids Struct. 24 (6), 833854.CrossRefGoogle Scholar
Peskin, C. S. 1977 Numerical analysis of blood flow in the heart. J. Comput. Phys. 25, 220252.CrossRefGoogle Scholar
Peskin, C. S. 2002 The immersed boundary method. Acta Numerica 11, 139.CrossRefGoogle Scholar
Peskin, C. S. & Printz, B. F. 1993 Improved volume conservation in the computation of flows with immersed elastic boundaries. J. Comput. Phys. 105, 3346.CrossRefGoogle Scholar
Roshko, A. 1954 On the development of turbulent wakes from vortex streets. Tech. Rep. 1191, National Advisory Committee for Aeronautics (NACA).Google Scholar
Saiki, E. M. & Biringen, S. 1996 Numerical simulation of a cylinder in uniform flow: application of a virtual boundary method. J. Comput. Phys. 123, 450465.CrossRefGoogle Scholar
Spalart, P. R. 1988 a Direct numerical simulation of a turbulent boundary layer up to Re = 1400. J. Fluid Mech. 187, 6198.CrossRefGoogle Scholar
Spalart, P. R. 1988 b Direct numerical study of leading edge contamination in fluid dynamics of three-dimensional turbulent shear flows and transition. AGARDCP 438, 5.15.13.Google Scholar
Taira, K. & Colonius, T. 2007 The immersed boundary method: a projection approach. J. Comput. Phys. 225, 21182137.CrossRefGoogle Scholar
Taneda, S. 1968 Waving motions of flags. J. Phys. Soc. Japan 24 (2), 392401.CrossRefGoogle Scholar
Tezduyar, T. 1992 Stabilized finite element formulations for incompressible-flow computations. Adv. Appl. Mech. 28, 144.Google Scholar
Tezduyar, T. 2001 Finite element methods for flow problems with moving boundaries and interfaces. Arch. Comput. Meth. Engng 8, 83130.CrossRefGoogle Scholar
Tseng, Y. H. & Ferziger, J. H. 2003 A ghost-cell immersed boundary method for flow in complex geometry. J. Comput. Phys. 192, 593623.CrossRefGoogle Scholar
Vogel, S. 1996 Life in Moving Fluids: The Physical Biology of Flow. Princeton University Press.Google Scholar
Williamson, C. H. K. 1988 Defining a universal and continuous Strouhal–Reynolds number relationship for the laminar vortex shedding of a circular cylinder. Phys. Fluids 31 (10), 27422744.CrossRefGoogle Scholar
Williamson, C. H. K. & Govardhan, R. 2004 Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36, 413455.CrossRefGoogle Scholar
Williamson, C. H. K. & Roshko, A. 1988 Vortex formation in the wake of an oscillating cylinder. J. Fluids Struct. 2 (4), 355381.CrossRefGoogle Scholar
Zhang, J., Childress, S., Libchaber, A. & Shelley, M. 2000 Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind. Nature 408, 835839.CrossRefGoogle Scholar
Zhang, L. J. & Eldredge, J. D. 2009 A viscous vortex particle method for deforming bodies with application to biolocomotion. Intl J. Numer. Methods Fluids 59, 12991320.CrossRefGoogle Scholar
Zhou, C. Y., So, R. M. C. & Lam, K. 1999 Vortex-induced vibrations of an elastic circular cylinder. J. Fluids Struct. 13 (2), 165189.CrossRefGoogle Scholar
Zhu, L. 2008 Scaling laws for drag of a compliant body in an incompressible viscous flow. J. Fluid Mech. 607, 387400.CrossRefGoogle Scholar
Zhu, L. & Peskin, C. S. 2002 Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method. J. Comput. Phys. 179, 452468.CrossRefGoogle Scholar
Zhu, Q. & Shoele, K. 2008 Propulsion performance of a skeleton-strengthened fin. J. Exp. Biol. 211 (13), 20872100.CrossRefGoogle ScholarPubMed