Article contents
The fluid dynamics of an attic space
Published online by Cambridge University Press: 20 April 2006
Abstract
This paper reports a fundamental study of the fluid dynamics inside a triangular (attic-shaped) enclosure with cold upper wall and warm horizontal bottom wall. The study was undertaken in three distinct parts. In the first part, the flow and temperature fields in the cavity are determined theoretically on the basis of an asymptotic analysis valid for shallow spaces (H/L → 0, where H and L are the attic height and length). It is shown that in the H/L → 0 limit the circulation consists of a single elongated cell driven by the cold upper wall. The net heat transfer in this limit is dominated by pure conduction. In the second part of the study, the transient behaviour of the attic fluid is examined, based on a scaling analysis. The transient phenomenon begins with the sudden cooling of the upper sloped wall. It is shown that both walls develop thermal and viscous layers whose thicknesses increase towards steady-state values. The criterion for the existence of distinct thermal layers in the steady state is (H/L)½RaH¼ > 1, where RaH is the Rayleigh number based on attic height. The corresponding criterion for distinct viscous wall jets is (H/L)½RaH¼ Pr−½ > 1, where Pr is the Prandtl number. The third phase of this study focused on a complete sequence of transient numerical simulations covering the ranges H/L = 0.2, 0.4, 1; RaH/Pr = 10, 103, 105; Pr = 0.72, 6. The numerical experiments verify the flow features described theoretically in the first two parts of the study. The effect of thermal convection on the net heat transfer between the bottom and top walls is illustrated numerically. Finally, the transient numerical experiments show that in the present parametric domain the single-cell circulation pattern is stable with respect to the Bénard instability expected in fluid layers heated from below.
- Type
- Research Article
- Information
- Copyright
- © 1983 Cambridge University Press
References
- 116
- Cited by