Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-12T23:58:40.907Z Has data issue: false hasContentIssue false

Fluid inertia effects on the motion of small spherical bubbles or solid spheres in turbulent flows

Published online by Cambridge University Press:  25 June 2021

Zhentong Zhang
Affiliation:
Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS, 31400Toulouse, France
Dominique Legendre
Affiliation:
Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS, 31400Toulouse, France
Rémi Zamansky*
Affiliation:
Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS, 31400Toulouse, France
*
Email address for correspondence: remi.zamansky@imft.fr

Abstract

In this paper we study finite particle Reynolds number effects up to $Re_p=50$ on the dynamics of small spherical bubbles and solid particles in an isotropic turbulent flow. We consider direct numerical simulations of light pointwise particles with various expressions of the drag force to account for finite $Re_p$ and the type of particle. Namely, we consider the Stokes drag law, the Schiller and Neumann relation and the Mei law. We show that an effective Stokes number, based on the mean value of the drag coefficient to account for the inertial effects involved in the drag law, gives a quasi-self-similar evolution of the variances of the bubble acceleration and of the forces exerted on the particle. This allows us to provide a satisfactory prediction of these quantities using Tchen's theory at finite particle Reynolds number. Based on these relations, we can specify the conditions under which the total inertial force (sum of the added mass and the Tchen contributions) is negligible compared with the drag force. Thus, for particles of very small dimensions, the fluid inertia force is negligible, provided the density ratio is of order 1 or larger. However, when the particle inertia becomes consequential, the threshold value of the density ratio increases significantly. Although this corresponds to the limit of the validity of the model, this draws attention to the fact that, for large Stokes numbers, the added mass and fluid inertia forces could play a more important role than is usually attributed to them.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Laboratoire de Mathématiques Raphaël Salem, UFR des Sciences et Techniques, Université de Rouen Normandie, 76801 Saint-Étienne-du-Rouvray, France

References

REFERENCES

Alipchenkov, V.M. & Zaichik, L.I. 2010 Modeling of the motion of light-weight particles and bubbles in turbulent flows. Fluid Dyn. 45 (4), 574590.CrossRefGoogle Scholar
Armenio, V. & Fiorotto, V. 2001 The importance of the forces acting on particles in turbulent flows. Phys. Fluids 13 (8), 24372440.CrossRefGoogle Scholar
Auton, T.R., Hunt, J.C.R. & Prud'Homme, M. 1988 The force exerted on a body in inviscid unsteady non-uniform rotational flow. J. Fluid Mech. 197, 241257.CrossRefGoogle Scholar
Bagchi, P. & Balachandar, S. 2003 Effect of turbulence on the drag and lift of a particle. Phys. Fluids 15 (11), 34963513.CrossRefGoogle Scholar
Bec, J., Biferale, L., Boffetta, G., Celani, A., Cencini, M., Lanotte, A., Musacchio, S. & Toschi, F. 2006 Acceleration statistics of heavy particles in turbulence. J. Fluid Mech. 550, 349358.CrossRefGoogle Scholar
Bec, J., Biferale, L., Cencini, M., Lanotte, A. & Toschi, F. 2010 Intermittency in the velocity distribution of heavy particles in turbulence. J. Fluid Mech. 646, 527536.CrossRefGoogle Scholar
Bergougnoux, L., Bouchet, G., Lopez, D. & Guazzelli, É. 2014 The motion of solid spherical particles falling in a cellular flow field at low Stokes number. Phys. Fluids 26 (9), 093302.CrossRefGoogle Scholar
Calzavarini, E., Kerscher, M., Lohse, D. & Toschi, F. 2008 Dimensionality and morphology of particle and bubble clusters in turbulent flow. J. Fluid Mech. 607, 1324.CrossRefGoogle Scholar
Calzavarini, E., Volk, R., Bourgoin, M., Lévêque, E., Pinton, J.-F. & Toschi, F. 2009 Acceleration statistics of finite-sized particles in turbulent flow: the role of Faxén forces. J. Fluid Mech. 630 (-1), 179189.CrossRefGoogle Scholar
Calzavarini, E., Volk, R., Lévêque, E., Pinton, J.-F. & Toschi, F. 2012 Impact of trailing wake drag on the statistical properties and dynamics of finite-sized particle in turbulence. Physica D 241 (3), 237244.CrossRefGoogle Scholar
Février, P., Simonin, O. & Squires, K.D. 2005 Partitioning of particle velocities in gas–solid turbulent flows into a continuous field and a spatially uncorrelated random distribution: theoretical formalism and numerical study. J. Fluid Mech. 533, 146.CrossRefGoogle Scholar
Gatignol, R. 1983 The Faxén formulae for a rigid particle in an unsteady non-uniform Stokes flow. J. Méc. 1, 143160.Google Scholar
Gorokhovski, M. & Zamansky, R. 2018 Modeling the effects of small turbulent scales on the drag force for particles below and above the Kolmogorov scale. Phys. Rev. Fluids 3 (3), 123.CrossRefGoogle Scholar
Hadamard, J.S. 1911 Mouvement permanent lent d'une sphere liquide et visqueuse dans un liquide visqueux. C. R. Acad. Sci. Paris 152, 1735.Google Scholar
Hinze, J.O. 1975 Turbulence, 2nd edn. McGraw-Hill.Google Scholar
Kumar, B., Schumacher, J. & Shaw, R.A. 2014 Lagrangian mixing dynamics at the cloudy–clear air interface. J. Atmos. Sci. 71 (7), 25642580.CrossRefGoogle Scholar
La Porta, A., Voth, G.A., Crawford, A.M., Alexander, J. & Bodenschatz, E. 2001 Fluid particle accelerations in fully developed turbulence. Nature 409, 10171019.CrossRefGoogle ScholarPubMed
Lanotte, A., Calzavarini, E., Federico, T., Jeremie, B., Luca, B. & Massimo, C. 2011 Heavy particles in turbulent flows. Dataset, International CFD Database.Google Scholar
Levich, V.G. 1962 Physicochemical Hydrodynamics. Prentice-Hall.Google Scholar
Magnaudet, J. & Eames, I. 2000 The motion of high-Reynolds-number bubbles in inhomogeneous flows. Annu. Rev. Fluid Mech. 32, 659708.CrossRefGoogle Scholar
Mathai, V., Calzavarini, E., Brons, J., Sun, C. & Lohse, D. 2016 Microbubbles and microparticles are not faithful tracers of turbulent acceleration. Phys. Rev. Lett. 117, 024501.CrossRefGoogle Scholar
Mathai, V., Lohse, D. & Sun, C. 2020 Bubble and buoyant particle laden turbulent flows. Annu. Rev. Condens.: Matter Phys. 11, 138.Google Scholar
Maxey, M.R., Chang, E.J. & Wang, L.-P. 1994 Simulation of interactions between microbubbles and turbulent flows. Appl. Mech. Rev. 47 (6S), S70S74.CrossRefGoogle Scholar
Maxey, M.R. & Corrsin, S. 1986 Gravitational settling of aerosol particles in randomly oriented cellular flow fields. J. Atmos. Sci. 43 (11), 11121134.2.0.CO;2>CrossRefGoogle Scholar
Maxey, M.R. & Riley, J.J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26 (4), 883889.CrossRefGoogle Scholar
Mei, R. 1996 Velocity fidelity of flow tracer particles. Exp. Fluids 22 (1), 113.CrossRefGoogle Scholar
Mei, R., Klausner, J.F. & Lawrence, C.J. 1994 A note on the history force on a spherical bubble at finite Reynolds number. Phys. Fluids 6, 418.CrossRefGoogle Scholar
Moore, D.W. 1963 The boundary layer on a spherical gas bubble. J. Fluid Mech. 16 (2), 161176.CrossRefGoogle Scholar
Mordant, N., Metz, P. & Michel, O. 2001 Measurement of Lagrangian velocity in fully developed turbulence. Phys. Rev. Lett. 21, 214501.CrossRefGoogle Scholar
Olivieri, S., Picano, F., Sardina, G., Iudicone, D. & Brandt, L. 2014 The effect of the basset history force on particle clustering in homogeneous and isotropic turbulence. Phys. Fluids 26 (4), 041704.CrossRefGoogle Scholar
Prakash, V.N., Tagawa, Y., Calzavarini, E., Mercado, J.M., Toschi, F., Lohse, D. & Sun, C. 2012 How gravity and size affect the acceleration statistics of bubbles in turbulence. New J. Phys. 14 (10), 105017.CrossRefGoogle Scholar
Qureshi, N.M., Arrieta, U., Baudet, C., Cartellier, A., Gagne, Y. & Bourgoin, M. 2008 Acceleration statistics of inertial particles in turbulent flow. Eur. Phys. J. B 66 (4), 531536.CrossRefGoogle Scholar
Rivero, M., Magnaudet, J. & Fabre, J. 1991 Quelques résultats nouveaux concernant les forces exercées sur une inclusion sphérique par un écoulement accéléré. C. R. Acad. Sci. Paris 312 (Série II), 14991506.Google Scholar
Rybczynski, W. 1911 On the translatory of a fluid sphere in a viscous medium. Bull. Acad. Sci. Cracovie A, 4046.Google Scholar
Sawford, B.L. & Yeung, P.K. 2011 Kolmogorov similarity scaling for one-particle Lagrangian statistics. Phys. Fluids 23 (9), 091704.CrossRefGoogle Scholar
Sawford, B.L., Yeung, P.K., Borgas, M.S., Vedula, P., La Porta, A., Crawford, A.M. & Bodenschatz, E. 2003 Conditional and unconditional acceleration statistics in turbulence. Phys. Fluids 15 (11), 34783489.CrossRefGoogle Scholar
Schiller, L. & Naumann, A. 1933 Über die grundlegenden berechnungen bei der schwerkraftaufbereitung. Z. Verein. Deutsch. Ing. 77, 318320.Google Scholar
Stokes, G. 1851 On the effect of the inertial friction of fluids on the motions of pendulums. Trans. Camb. Phil. Soc. 9, 8.Google Scholar
Taylor, T.D. & Acrivos, A. 1964 On the deformation and drag of a falling viscous drop at low Reynolds number. J. Fluid Mech. 18 (3), 466476.CrossRefGoogle Scholar
Tchen, C.M. 1947 Mean value and correlation problems connected with the motion of small particles suspended in a turbulent fluid. PhD thesis, Delft University, Netherlands.Google Scholar
Toschi, F. & Bodenschatz, E. 2009 Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41 (1), 375404.CrossRefGoogle Scholar
Volk, R., Calzavarini, E., Lévêque, E. & Pinton, J.-F. 2011 Dynamics of inertial particles in a turbulent von Kármán flow. J. Fluid Mech. 668, 223235.CrossRefGoogle Scholar
Volk, R., Calzavarini, E., Verhille, G., Lohse, D., Mordant, N., Pinton, J.-F. & Toschi, F. 2008 Acceleration of heavy and light particles in turbulence: comparison between experiments and direct numerical simulations. Physica D 237 (14–17), 20842089.CrossRefGoogle Scholar
Voth, G.A., La Porta, A., Grawford, A.M., Alexander, J. & Bodenschatz, E. 2002 Measurements of particle accelerations in fully developed turbulence. J. Fluid Mech. 469, 121.CrossRefGoogle Scholar
Wang, L.-P. & Maxey, M.R. 1993 Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 256, 2768.CrossRefGoogle Scholar
Yeung, P.K., Pope, S.B., Lamorgese, A.G. & Donzis, D.A. 2006 Acceleration and dissipation statistics of numerically simulated isotropic turbulence. Phys. Fluids 18, 065103.CrossRefGoogle Scholar
Zhang, Z. 2019 Dynamique des micro-bulles dans un écoulements turbulents. PhD thesis, Institut National Polytechnique de Toulouse.Google Scholar
Zhang, Z., Legendre, D. & Zamansky, R. 2019 Model for the dynamics of micro-bubbles in high Reynolds number flows. J. Fluid Mech. 879, 554578.CrossRefGoogle Scholar