Published online by Cambridge University Press: 24 July 2020
The Fokker–Planck approximation to the Boltzmann equation has emerged as an efficient alternative to the discrete simulation Monte Carlo method for various flow simulations. This method has been mostly limited to simulating single-component rarefied gas flows. In the present paper, we propose two models based on the Fokker–Planck equation and quasi-equilibrium models that are capable of describing the dynamics of rarefied binary gas mixtures over a large range of Schmidt numbers. We first prove that these models satisfy the necessary conservation laws and the $H$-theorem. We validate the model by simulating three benchmark problems – Graham's law for effusion, Couette flow and binary diffusion.