Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T20:37:51.587Z Has data issue: false hasContentIssue false

Fully nonlinear local induction equation describing the motion of a vortex filament in superfluid 4He

Published online by Cambridge University Press:  24 July 2012

Robert A. Van Gorder*
Affiliation:
Department of Mathematics, University of Central Florida, Orlando, FL 32816-1364, USA
*
Email address for correspondence: rav@knights.ucf.edu

Abstract

We obtain the fully nonlinear local induction equation describing the motion of a vortex filament in superfluid 4He. As the relevant friction parameters are small, we linearize terms involving such parameters, while keeping the remaining nonlinearities, which accurately describe the curvature of the vortex filament, intact. The resulting equation is a type of nonlinear Schrödinger equation, and, under an appropriate change of variables, this equation is shown to have a first integral. This is in direct analogy with the simpler equation studied previously in the literature; indeed, in the limit where the superfluid parameters are taken to zero, we recover the results of Van Gorder. While this first integral is mathematically interesting, it is not particularly useful for computing solutions to the nonlinear partial differential equation which governs the vortex filament. As such, we introduce a new change of dependent variable, which results in a nonlinear four-dimensional system that can be numerically integrated. Integrating this system, we recover solutions to the fully nonlinear local induction equation describing the motion of a vortex filament in superfluid 4He. We find that the qualitative features of the solutions depend not only on the superfluid friction parameters, but also strongly on the initial conditions taken, the curvature and the normal fluid velocity.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Arms, R. J. & Hama, F. R. 1965 Localized-induction concept on a curved vortex and motion of an elliptic vortex ring. Phys. Fluids 8, 553.CrossRefGoogle Scholar
2. Da Rios, L. S. 1906 Sul moto d’un liquido indefinite con un filetto vorticoso di forma qualunque. Rend. Circ. Mat. Palermo 22, 117.Google Scholar
3. Dmitriyev, V. P. 2005 Helical waves on a vortex filament. Am. J. Phys. 73, 563.CrossRefGoogle Scholar
4. Hall, H. E. & Vinen, W. F. 1956a The rotation of liquid helium II. I. Experiments on the propagation of second sound in uniformly rotating helium II. Proc. R. Soc. Lond. A 238, 204.Google Scholar
5. Hall, H. E. & Vinen, W. F. 1956b The rotation of liquid helium II. II. The theory of mutual friction in uniformly rotating helium I. Proc. R. Soc. Lond. A 238, 215.Google Scholar
6. Hasimoto, H. 1971 Motion of a vortex filament and its relation to elastica. J. Phys. Soc. Japan 31, 293.CrossRefGoogle Scholar
7. Kida, S. 1981 A vortex filament moving without change of form. J. Fluid Mech. 112, 397.Google Scholar
8. Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics. Addison and Wesley.Google Scholar
9. Lipniacki, T. 2003 Quasi-static solutions for quantum vortex motion under the localized induction approximation. J. Fluid Mech. 477, 321.CrossRefGoogle Scholar
10. Maggioni, F., Alamri, S. Z., Barenghi, C. F. & Ricca, R. L. 2009 Kinetic energy of vortex knots and unknots. Nuovo Cimento C 32, 133.Google Scholar
11. Maggioni, F., Alamri, S. Z., Barenghi, C. F. & Ricca, R. L. 2010 Velocity, energy, and helicity of vortex knots and unknots. Phys. Rev. E 82, 026309.CrossRefGoogle ScholarPubMed
12. Ricca, R. L. 1993 Torus knots and polynomial invariants for a class of soliton equations. Chaos 3, 83.Google Scholar
13. Ricca, R. L., Samuels, D. C. & Barenghi, C. F. 1999 Evolution of torus knots. J. Fluid Mech. 391, 29.Google Scholar
14. Schwarz, K. W. 1985 Three-dimensional vortex dynamics in superfluid 4He: line–line and line–boundary interactions. Phys. Rev. B 31, 5782.CrossRefGoogle ScholarPubMed
15. Schwarz, K. W. 1988 Three-dimensional vortex dynamics in superfluid 4He: homogeneous superfluid turbulence. Phys. Rev. B 38, 2398.CrossRefGoogle ScholarPubMed
16. Shivamoggi, B. K. 2011 Vortex motion in superfluid 4He: reformulation in the extrinsic vortex-filament coordinate space. Phys. Rev. B 84, 012506.CrossRefGoogle Scholar
17. Shivamoggi, B. K. & van Heijst, G. J. F. 2010 Motion of a vortex filament in the local induction approximation: reformulation of the Da Rios–Betchov equations in the extrinsic filament coordinate space. Phys. Lett. A 374, 1742.CrossRefGoogle Scholar
18. Umeki, M. 2010 A locally induced homoclinic motion of a vortex filament. Theor. Comput. Fluid Dyn. 24, 383.Google Scholar
19. Van Gorder, R. A. 2011 Integrable stationary solution for the fully nonlinear local induction equation describing the motion of a vortex filament. Theor. Comput. Fluid Dyn., doi:10.1007/s00162-011-0244-8 (in press).CrossRefGoogle Scholar
20. Van Gorder, R. A. 2012 Motion of a vortex filament in the local induction approximation: a perturbative approach. Theor. Comput. Fluid Dyn. 26, 161171.CrossRefGoogle Scholar