Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T07:32:04.607Z Has data issue: false hasContentIssue false

Generalized energetics for inertially stable parallel shear flows

Published online by Cambridge University Press:  07 August 2007

R. C. KLOOSTERZIEL
Affiliation:
School of Ocean & Earth Science & Technology, University of Hawaii, Honolulu, HI 96822, USA
G. F. CARNEVALE
Affiliation:
Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA

Abstract

For simple parallel shear flows on the f-plane and the equatorial β-plane we derive an energy norm for zonally invariant perturbations. It is used to derive the linear stability boundary for when these flows are inertially stable in the classical sense but may be destabilized due to unequal rates of diffusion of momentum and heat. The analysis is valid when there are arbitrary, zonally invariant, no-slip boundaries which are perfect thermal conductors.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Charney, J. G. 1973 Lecture notes on planetary fluid dynamics. In Dynamic Meteorology (ed. Morel, P.). Reidel.Google Scholar
Drazin, P. G. 2002 Introduction to Hydrodynamic Stability. Cambridge University Press.CrossRefGoogle Scholar
Dunkerton, T. J. 1981 On the inertial instability of the equatorial middle atmosphere. J. Atmos. Sci. 38, 23542365.2.0.CO;2>CrossRefGoogle Scholar
Eliassen, A. 1951 Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophysica Norvegia 5, 1960.Google Scholar
Fj\ortoft, R. 1950 Application of integral theorems in deriving criteria of stability for laminar flows and for the baroclinic vortex. Geofys. Publ. 17 (6), 552.Google Scholar
Griffiths, S. D. 2003 Nonlinear vertical scale selection in equatorial inertial instability. J. Atmos. Sci. 60, 977990.2.0.CO;2>CrossRefGoogle Scholar
H\oiland, E. 1962 Discussion of a hyperbolic equation relating to inertia and gravitational fluid oscillations Geofys. Publ. 24, 211227.Google Scholar
Holton, J. R. 1992 An Introduction to Dynamic Meteorology. Academic.Google Scholar
Hua, B. L., Moore, D. W. & Le Gentil, S. 1997 Inertial nonlinear equilibration of equatorial flows. J. Fluid Mech. 331, 345371.CrossRefGoogle Scholar
Maas, L. R. M., Benielli, D., Sommeria, J. & Lam, F. P. A. 1997 Observations of an internal wave attractor in a confined, stably stratified fluid. Nature, 388, 557561.CrossRefGoogle Scholar
McIntyre, M. E. 1970 Diffusive destabilization of the baroclinic circular vortex. Geophys. Fluid Dyn. 1, 1958.CrossRefGoogle Scholar
Ooyama, K. 1966 On the stability of the baroclinic circular vortex: a sufficient condition for instability. J. Atmos. Sci. 23, 4353.2.0.CO;2>CrossRefGoogle Scholar
Rayleigh, Lord 1916 On the dynamics of revolving fluids. Proc. R. Soc. Lond. A 93, 148154.Google Scholar
Sawyer, S. J. 1949 The significance of dynamic instability in atmospheric motions. Q. J. R. Met. Soc. 75, 364374.CrossRefGoogle Scholar
Solberg, H. 1936 Le mouvement d'inertie de l'atmosphere stable et son role dans la theorie des cyclones. Sixth Assembly, Edinburgh. Union Geodesique et Geophysique Internationale, pp. 66–82.Google Scholar
Yanai, M. & Tokiaka, T. 1969 Axially symmetric meridional motions in the baroclinic circular vortex: a numerical experiment. J. Met. Soc. Japan 47 (3), 183197.CrossRefGoogle Scholar