Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-13T01:32:45.606Z Has data issue: false hasContentIssue false

Generation of instability waves in flows separating from smooth surfaces

Published online by Cambridge University Press:  20 April 2006

M. E. Goldstein
Affiliation:
National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio 44135

Abstract

This paper analyses the coupling between an imposed disturbance and an instability wave that propagates downstream on a shear layer which emanates from a separation point on a smooth surface. Since the wavelengths of the most-amplified instability waves will generally be small compared with the streamwise body dimensions, the analysis is restricted to this ‘high-frequency’ limit and the solution is obtained by using matched asymptotic expansions. An ‘inner’ solution, valid near the separation point, is matched onto an outer solution, which represents an instability wave on a slowly diverging mean flow. The analysis relates the amplitude of this instability to that of the imposed disturbance.

Type
Research Article
Copyright
© 1984 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahttja, K. K., Whipkey, R. R. & Jones, G. S. 1983 Control of turbulent boundary layer flows by sound. AIAA 8th Aeroacoust. Conf., Paper 83-0726.Google Scholar
Bechert, D. & Pfizenmaier, E. 1975 J. Fluid Mech. 71, 123.
Birkhhoff, G. & Zarantonello, E. H. 1957 Jets, Wakes and Cavities. Academic.
Brown, S. M. & Cheng, H. K. 1981 J. Fluid Mech. 108, 171.
Brown, S. N. & Daniels, P. G. 1975 J. Fluid Mech. 67, 743.
Cheng, H. K. & Smith, F. T. 1982 Z. angew. Math. Phys. 33, 151179.
Crighton, D. G. & Leppington, F. G. 1974 J. Fluid Mech. 64, 393.
Daniels, P. G. 1977 Q. J. Mech. Appl. Maths 30, 319.
Drazin, P. & Reid, W. 1981 Hydrodynamic Stability. Cambridge University Press.
Elliott, J. W., Smith, F. T. & Cowley, S. J. 1983 Geophys. Astrophys. Fluid Dyn. 25, 77.
Gakhov, F. D. 1966 Boundary Value Problems. Addison-Wesley.
Imai, I. 1953 J. Phys. Soc. Japan 8, 399.
Kirchhoff, G. 1969 J. reine angew. Math. 70, 289.
Messiter, A. F. 1970 SIAM J. Appl. Maths 18, 291.
Messiter, A. F. & Enlow, R. L. 1973 SIAM J. Appl. Maths 25, 655.
Milne-Thomson, L. M. 1960 Theoretical Hydrodynamics, 4th edn. Macmillan.
Mueller, T. J. & Batill, S. M. 1982 AIAA J. 20, 457.
Morkovin, M. V. 1969 Air Force Flight Dyn. Lab., Wright—Patterson AFB, Ohio, Rep. AFFDL-TR-68.
Morkovin, M. V. & Paranjape, S. V. 1971 Z. Flugwiss. 19, 328.
Nayfeh, A. H. 1973 Perturbation Methods. Wiley.
Orszag, S. A. & Crow, S. C. 1970 Stud. Appl. Maths 49, 167.
Rienstra, S. W. 1981 J. Fluid Mech. 108, 443.
Smith, F. T. 1977 Proc. R. Soc. Lond. A 356, 443.
Smith, F. T. 1979 J. Fluid Mech. 92, 171.
Smith, F. T. & Daniels, P. G. 1981 J. Fluid Mech. 110, 1.
Stewartson, K. 1969 Mathematika 16, 106.
Sychev, V. V. 1972 Izv. Akad. Nauk SSR, Mekh. Zhid. Gaza 3, 47 [English transl. Fluid Dyn. 7, 407].
Sychev, V. V. 1979 Izv. Akad. Nauk SSR, Mekh. Zhid. Gaza 6, 2122.
Sychev, V. V. & Sychev, V. V. 1980 Zh. Vych. Mat. i Mat. Fiz. 20, 1500. [English transl. NASA TM 76634, Nov. 1981].
Tam, C. K. W. 1971 J. Fluid Mech. 46, 757.